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Introduction

Pourquoi et comment utiliser l’aléatoire pour décrire
des phénomènes physiques ?



Physique statistique et aléatoire (1/2)

• En physique statistique, on utilise des outils probabilistes pour

modéliser des systèmes complexes soumis à des fluctuations.

• Ces fluctuations peuvent être d’origine déterministe, mais trop

complexes pour être décrites précisément.

• Exemple classique : le lancer d’un dé obéit aux lois déterministes de

la mécanique, mais la face obtenue est imprévisible en pratique–on

modélise cela par de l’aléatoire.

• De la même facon, une particule, une cellule, un animal... peut avoir

un comportement aléatoire.

• Sa trajectoire devient alors une réalisation d’un processus

stochastique.
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• Ces fluctuations peuvent être d’origine déterministe, mais trop
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• En physique statistique, on utilise des outils probabilistes pour
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Physique statistique et aléatoire (2/2)

• Exemples de systèmes physiques modélisés par des processus

stochastiques :

• Mouvement brownien d’un grain de pollen (≈ 5µm) à la surface de

l’eau — observé par Brown (1827), modélisé par Einstein (1905)

• Une cellule immunitaire (≈ 7µm) explorant un tissu à la recherche

d’un pathogène

• Une fourmi (≈ 1cm) cherchant son nid via les phéromones laissées

par ses congénères...

• Dans cette thèse, on s’intéresse à la manière dont ces processus

explorent l’espace : efficacité à localiser des cibles, probabilité d’en

atteindre une avant une autre, etc.
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Observables statistiques liées à l’exploration

L’exploration de l’espace par un marcheur aléatoire est caractérisée par

plusieurs observables paradigmatiques :

(a) Propagateur P

(b) Premier passage F

(’temps pour trouver une

cible’)

(c) Splitting π

(’compétition entre deux

cibles’)

Ces observables fondamentales font l’objet de nombreuses études

[Redner,Schehr,Bénichou,Voituriez,Majumdar...]
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Contexte : marches aléatoires et mémoire (1/2)

• La marche aléatoire simple et son analogue continu le mouvement

brownien sont des modèles classiques en physique statistique.

• Leur dynamique, bien qu’aléatoire, est sans mémoire, car l’état

futur ne dépend que de l’état présent: elle est dite markovienne.

t

x
1
2

1
2

• Ces modèles décrivent de nombreux phénomènes physiques

classiques (diffusion thermique, réactions chimiques...).

• Leur caractère markovien permet un calcul des observables P,F , π.
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brownien sont des modèles classiques en physique statistique.
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Contexte : marches aléatoires et mémoire (2/2)

• La plupart des systèmes réels violent la propriété de Markov :

l’état futur dépend de la trajectoire passée.

• Ces processus sont dits non-markoviens, et impliquent des effets

de mémoire à long terme.

Exemples concrets :

• Fourmis, cellules modifiant leur environnement local (traces de

phéromones, modification de la matrice extracellulaire...)

• Corrélations à longue portée dans les marchés financiers...
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phéromones, modification de la matrice extracellulaire...)
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• Corrélations à longue portée dans les marchés financiers...

7
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Que signifie “non-markovien” ? (1/2)

• Contrairement aux processus markoviens, l’évolution d’un processus

non-markovien ne dépend pas seulement de l’état présent, mais de

la trajectoire passée entière.

• Cette mémoire émerge souvent de l’évolution stochastique de

degrés de liberté cachés, internes (ex. réactions biochimiques) ou

externes (couplage avec l’environnement).

• Il n’existe pas, à ce jour, de cadre analytique général pour traiter ces

processus — pourtant omniprésents dans les systèmes réels.

• Le calcul des observables classiques P,F , π constitue alors un vrai

défi.
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Que signifie “non-markovien” ? (2/2)

Conséquences typiques :

• Vieillissement : les observables dépendent de l’âge du système

• Diffusion anormale : ⟨x2(t)⟩ ∼ tµ avec µ ̸= 1

• Propagateurs non gaussiens ⇒ échec du théorème central limite

⇒ fortes corrélations dans les incréments

• Multiscaling, piégeage, transitions dynamiques...

Objectif : À partir de modèles simples et d’observables bien choisies, on

veut comprendre les effets de la mémoire sur l’exploration.
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Stratégie de la thèse (1/2)

• Étudier analytiquement des modèles minimaux non-markoviens

issus de la littérature, construits à partir de mécanismes simples et
physiquement pertinents :

• Mémoire spatiale locale

• Auto-interaction

• Corrélations temporelles dans les incréments.

• Quantifier l’effet de la mémoire sur l’exploration de ces processus.

• Mettre en lumière des structures communes dans la diversité des

dynamiques non-markoviennes.
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• Quantifier l’effet de la mémoire sur l’exploration de ces processus.

• Mettre en lumière des structures communes dans la diversité des

dynamiques non-markoviennes.

10



Stratégie de la thèse (1/2)
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Stratégie de la thèse (2/2)

Trois axes d’étude :

1. Marches activées localement — la dynamique du marcheur

dépend du temps passé dans certaines régions de l’espace.

2. Marches auto-interagissantes — le marcheur laisse derrière lui des

empreintes qui modifient sa trajectoire future (effet “Petit Poucet”).

3. Identification d’observables universelles pour quantifier

exploration et vieillissement.
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Marches activées
localement

Quel est l’impact d’une perturbation localisée sur
l’exploration ?



Illustration et motivation

Q : Comment analyser la statistique d’un processus dont la dynamique

dépend du passé, à travers le nombre de passages dans certaines régions

de l’espace ?

Défi : Le processus x(t) n’est pas markovien : la dynamique dépend de

l’histoire, et réciproquement.

13
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l’histoire, et réciproquement. 13



La LARW : une marche à mémoire locale

• La LARW est une marche aléatoire x(t) en temps continu sur Zd .

• L’origine est un point chaud : un site où le marcheur est activé.

• L’activation a du marcheur est le temps passé sur le point chaud:

a(t) =

∫ t

0

δ(x(t ′)) dt ′.

• Le taux de saut (vitesse) τ(a)−1 dépend de l’activation. Si τ(a)

crôıt, la LARW décélère à chaque passage au point chaud; si τ(a)

décrôıt, elle accélère.

14
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a(t) =

∫ t

0

δ(x(t ′)) dt ′.

• Le taux de saut (vitesse) τ(a)−1 dépend de l’activation.
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Contexte et état de l’art

• Modèle introduit par [Bénichou et al] pour une marche

unidimensionnelle en espace continu.

• Inspiré du comportement de certaines cellules immunitaires (cellules

dendritiques), dont la dynamique évolue après des contacts

prolongés avec des contraintes mécaniques locales [Moreau et al].

• S’inscrit dans la famille des modèles non-markoviens

fondamentaux où la trajectoire passée influence la dynamique

future : marche auto-interagissante

[Tóth,Dumaz,Amit,Peliti,Parisi,Barbier–Chebbah], de l’éléphant

[Schütz,Bertoin], ou du singe [Boyer].

• Le propagateur P de la LARW n’est connu qu’en d = 1 et en

espace continu. Que dire de P en dimension d quelconque ?
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Objectif de l’étude

• Comment la mémoire locale caractéristique des LARWs affecte-t-elle

l’exploration de l’espace ?

• Pour y répondre, on calcule le propagateur P(x , t).

• Notre approche permet en réalité d’obtenir la distribution jointe

P(x , a, t).
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Principe de la méthode

Le problème semble complexe : la dynamique à l’instant t dépend de

l’ensemble des retours au point chaud survenus pour t ′ < t, qui

eux-mêmes dépendent de la dynamique...

Idée centrale : entre deux retours successifs au point chaud, l’activation

a reste constante, et la trajectoire est donc markovienne.
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Obtention de P(0, a, t)

L’approche précédente conduit à l’équation fondamentale :

∂tP(0, a, t)+∂aP(0, a, t) = −P(0, a, t)

τ(a)
+

∫ t

0

dt ′

τ(a)
P(0, a, t ′)Fa(0|∂0, t−t ′).

Pour résoudre cette équation, on introduit la transformée de Laplace

temporelle :

f̂ (s) =

∫ ∞

0

e−st f (t) dt.

La transformée de Laplace de la loi du temps d’attente est:

ξa(s) =
1

1 + sτ(a)
.

18
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Détermination de P̂(0, a, s)

On obtient une expression explicite pour P̂(0, a, s) :

P̂(0, a, s) = exp

(
−
∫ a

0

db

ξbτ(b)Pd(0|0, ξb)

)
.

où Pd(x |y , ξ) est la fonction génératrice de la marche non-activée (nue).

On peut en déduire la loi jointe exacte:

P̂(x , a, s) =
Pd(x |0, ξa)
Pd(0|0, ξa)

exp

(
−
∫ a

0

db

τ(b)ξbPd(0|0, ξb)

)
.

Cette expression est inédite : la loi jointe de la position x et du temps a

passé en 0 n’est, à notre connaissance, pas connue même pour des

marches markoviennes non-activées.

Pour expliciter les calculs, on adopte ensuite la marche aléatoire simple

comme marche nue, mais le résultat reste valable pour tout type de

marche, sur tout type de graphe.
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Conséquences selon la dimension de l’espace

• d = 1, 2 : récurrence ⇒ retours fréquents au point chaud

⇒ le marcheur est repoussé du point chaud en cas d’accélération,

attiré en cas de décélération.

• d ≥ 3 : transience ⇒ le point chaud n’est visité qu’un nombre fini

de fois ⇒ les effets de mémoire sont plus subtils.

• Pour tout d : P reste non-gaussien ⇒ les incréments sont

fortement corrélés, même sous l’effet d’une perturbation locale.

−300−200−100 0 100 200 300
x

0.000

0.001

0.002

0.003

P(
x
,t

)

d = 1, accéléré
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−60−40−20 0 20 40 60
x

10−5

10−3

P(
x
,t

)

d = 2, décéléré
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Extension à plusieurs points chauds

Que se passe-t-il si on ajoute plusieurs points chauds ?

• Si les points chauds forment un réseau périodique : l’activation

devient déterministe à long temps, a(t) ∼ t
Ld (argument

ergodique).

• La statistique devient asymptotiquement gaussienne.

• Idem si les points chauds sont distribués avec une densité ρ > 0.

21
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Mémoire relaxée

Modèle relaxant : les points chauds sont toujours distribués

périodiquement (période L), mais l’activation décrôıt selon un taux γ :

da

dt
= 1hot(x(t))− γa(t). (1)

• Modèle physiquement réaliste : l’activation ne peut pas crôıtre

indéfiniment.

• Ce mécanisme induit une transition dynamique entre phase

gaussienne et non-gaussienne.

• Comportement non-gaussien si L
√
γ ≫ 1:
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• Modèle physiquement réaliste : l’activation ne peut pas crôıtre
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Conclusion

• La LARW est un modèle minimal de marcheurs perturbés

localement, comme des cellules immunitaires.

• Dans toutes les dimensions, elle présente une statistique clairement

non-gaussienne.

• La diffusion est généralement anormale : ⟨x2(t)⟩ ∝ tµ, avec µ ̸= 1.

• En d = 1, 2 :

• Accélération : expulsion du point chaud

• Décélération : localisation sur le point chaud.

• Si la densité de points chauds est ρ > 0 (finie) : les effets de

mémoire deviennent triviaux

⇒ comportement gaussien à long temps.

• La relaxation (physiquement inévitable) réintroduit des effets de

mémoire non triviaux, même en présence de plusieurs points

chauds.
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• La LARW est un modèle minimal de marcheurs perturbés

localement, comme des cellules immunitaires.

• Dans toutes les dimensions, elle présente une statistique clairement

non-gaussienne.
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• La diffusion est généralement anormale : ⟨x2(t)⟩ ∝ tµ, avec µ ̸= 1.

• En d = 1, 2 :

• Accélération : expulsion du point chaud

• Décélération : localisation sur le point chaud.
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mémoire deviennent triviaux

⇒ comportement gaussien à long temps.
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• La LARW est un modèle minimal de marcheurs perturbés

localement, comme des cellules immunitaires.

• Dans toutes les dimensions, elle présente une statistique clairement

non-gaussienne.
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Marches
auto-interagissantes

Après avoir vu l’effet d’une mémoire externe
localisée, que se passe-t-il si le marcheur construit

sa propre mémoire ?



Illustration et motivation

Q : Comment quantifier l’exploration spatiale d’une marche

auto-repoussée ou auto-attirée?

Défi : Cette fois-ci, le marcheur construit dynamiquement son propre

environnement, et la mémoire est faite de toute la trajectoire passée.
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SIRW : Définition et idée générale

• La SIRW (marche auto-interagissante) est une marche aléatoire en

espace et temps discrets sur Z.

• La probabilité de transition dépend de l’historique du marcheur via

le temps local des arêtes Lt(x), nombre de traversées de l’arête

{x , x + 1} :

Pt(x ± 1|x) ∝ w(Lt(x ± 1)).

• Si w(n) décrôıt, la marche est répulsive (exploratrice), si w(n)

crôıt, elle est attractive (timide).

• Exemple : le modèle séminal TSAW d’Amit–Parisi–Peliti, défini par

w(n) = e−βn, est donc répulsif.
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SIRW : Illustration de la définition
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Trois grandes classes universelles de SIRW

Trois grandes classes de SIRWs [Tóth]:

• SATWϕ : w(n) = δn,0/ϕ+ (1− δn,0) [Répulsive si ϕ < 1]

• PSRWγ : w(n) = n−γ [Répulsive]

• SESRWκ,β : w(n) = e−βnκ [Répulsive]

L’appartenance à une classe dépend du comportement asymptotique de

w(n).

Ainsi, toutes les SIRWs dont l’auto-interaction sature tombent dans la

classe SATWϕ.

De même, les SIRWs dont l’auto-interaction dépend uniquement du

gradient du temps local des arêtes tombent dans la classe TSAW

(SESRWκ=1,β).

On écarte les marches attractives non saturantes, qui sont soit piégées,

soit ont un comportement non physique [Pemantle, Diaconis, Davis].
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Motivations expérimentales et théoriques

• Modèle très naturel : un marcheur réel interagit avec son

environnement. Si cette interaction est locale, la SIRW en donne

une modélisation fidèle.

• Ce type de dynamique est observé chez des micro-organismes et des

cellules [Golestanian et al., d’Alessandro et al], des fourmis

[Dussutour et al.], et même des algorithmes d’échantillonnage

[Maggs].

• Modèle central en mathématiques : objet de nombreux travaux

théoriques profonds [Tóth, Werner, Dumaz, Pemantle, Yor...].

• Difficulté intrinsèque : le modèle reste mal compris. De nombreuses

observables restent inaccessibles : P,F , π...

• Objectif : proposer une stratégie permettant un calcul exact de ces

observables.
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• Ce type de dynamique est observé chez des micro-organismes et des
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Contexte théorique : état de l’art

• Le comportement d’échelle x(t) ∼ t1/dw est connu [Amit et al,

Tóth] :

dw =

{
2, diffusif (SATWϕ, PSRWγ)

κ+2
κ+1 < 2, super-diffusif (SESRWκ,β).

• Seules quelques observables ont été calculées : splitting π et temps

de premier passage F de la SATWϕ [Carmona, Petit, Yor], et

propagateur P de la TSAW [Dumaz et Tóth].
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Nos résultats principaux

Nous avons obtenu de façon exacte :

• L’exposant de persistance θ, qui caractérise la décroissance

algébrique du temps de premier passage :

F (x , t) ∼ t−1−θ.

Sa détermination est un problème central en physique statistique

[Bray et al., Derrida-Hakim-Pasquier], et réputée difficile pour un

processus non-markovien quelconque.

• La probabilité de splitting π.

• Le propagateur P pour les classes SATWϕ et PSRWγ . Même leur

coefficient de diffusion ⟨x2(t)⟩ = 2Dt était inaccessible !

Le calcul explicite de ces observables représentait un problème ouvert

important, tant en physique qu’en mathématiques.

Nous détaillons ici notre stratégie pour le calcul de π, puis de celui des

exposants de persistance θ.
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• L’exposant de persistance θ, qui caractérise la décroissance
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Stratégie de calcul de la probabilité de splitting π

• Soit Tk le premier instant où la SIRW atteint le site k.

• On note q+(k, L) la loi du nombre L+ 1 de sites visités à l’instant

Tk .

• La probabilité de splitting π de toucher k avant −m s’écrit:

π(k,−m) =
k+m−1∑
j=k

q+(k, j).

• Il suffit donc de connâıtre la distribution du support du temps

local d’arête.
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• Il suffit donc de connâıtre la distribution du support du temps

local d’arête.

33



Illustration : temps local d’arête et support
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Figure 2: Nombre de traversées de chaque arête {x , x − 1}, au moment du

premier passage en k = 4. Ici, L+ 1 = 14 sites ont été visités.

q+(k, L) est donc la loi de la taille L du support de (LTk
(x))x .
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Théorie de Ray-Knight pour la SIRW

• À grande échelle, [Tóth] a montré que le processus (LTk
(k − x))x≥0

converge vers un processus de Bessel carré (BESQδ) :

dY (x) = δ dx + 2
√
Y (x) dBx , Y (0) = 0.

• Le paramètre δ est entièrement déterminé par la fonction de poids w

de la SIRW.

• Ce résultat, pourtant puissant, est presque inconnu des physiciens.

Il permet de connâıtre la loi des variables cachées gouvernant

l’évolution du processus : la dynamique non-markovienne se ramène

à un problème markovien tractable.

• Notre contribution : relier la probabilité de splitting π à la loi du

support du temps local d’arête (LTk
(x))x∈Z — ce lien rend possible

le calcul explicite de π.
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(k − x))x≥0

converge vers un processus de Bessel carré (BESQδ) :
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Illustration : théorie de Ray-Knight

Figure 3: Temps local d’arêtes pour une SATWϕ=log 2, avec k = zL = 5000.

→ On en déduit la loi de q+, et donc π.
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Figure 3: Temps local d’arêtes pour une SATWϕ=log 2, avec k = zL = 5000.
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Résultats analytiques : Splitting π

Dans la limite L → ∞, la probabilité d’atteindre zL avant −(1− z)L est:

π(z) =

{
I1−z(ϕ) (SATWϕ)

2
π arcsin

√
1− z (PSRW, SESRW)

avec Iz(a) =
Γ(2a)
Γ(a)2

∫ z

0
(u(1− u))a−1du.

π ne dépend d’aucun paramètre du modèle (!) dans les cas PSRW et

SESRW, suivant une loi de l’arcsinus.

37



Résultats analytiques : Splitting π

Dans la limite L → ∞, la probabilité d’atteindre zL avant −(1− z)L est:
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Exposants de persistance θ

On obtient l’exposant de persistance θ (défini par F (x , t) ∝ t−1−θ) à

partir du comportement asymptotique:

π(z) ∝ (1− z)dwθ lorsque z → 1− [Zoia et al].

θ =


ϕ
2 (SATWϕ)

1
4 (PSRWγ)

1
2 · κ+1

κ+2 (SESRWκ,β).

Un tel résultat est particulièrement rare : pour un processus

non-markovien comme la SIRW, l’exposant de persistance est

généralement inaccessible analytiquement [Bray et al].

Dans le cas SATWϕ, l’exposant θ peut prendre n’importe quelle valeur

positive, alors que le processus est diffusif !

38



Exposants de persistance θ

On obtient l’exposant de persistance θ (défini par F (x , t) ∝ t−1−θ) à
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Confirmation numérique de notre expression de θ
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Confirmation numérique de notre expression de θ
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Résultats analytiques : propagateurs

• Les marches PSRWγ et SATWϕ sont diffusives :

P(x , t) ∼ 1√
2t

p

(
x√
2t

)

• Après avoir exprimé p à partir des temps locaux d’arête et effectué
les calculs techniques, on obtient :

p(u) =
(ϕ − 1)B

(
ϕ, ϕ+1

2

)
B(ϕ, ϕ)

√
π

∞∑
n=0

(
1−ϕ
2

)
n
(ϕ)n(

1+3ϕ
2

)
n

n + ϕ
2

(n + ϕ−1
2 )(n + ϕ+1

2 )

e−u2(2n+ϕ)2

n!
.

• Le coefficient de diffusion D est désormais accessible. Pour PSRWγ :

DPSRWγ
= (2γ + 1)

(
1

2
+ CCatalan +

π2

16

)
.
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Confirmation numérique : propagateur de la PSRW
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Conclusion

Nous avons obtenu exactement plusieurs observables clés des SIRW :

densité de premier passage F (via θ), propagateur P, probabilité de

splitting π.

Ces quantités (y compris le coefficient de diffusion !) étaient longtemps

restées inaccessibles, et leur détermination représentait une question

ouverte en mathématiques et en physique.

• Résultats de [Tóth] ⇒ accès à la statistique des degrés de liberté

cachés du processus, Lt(x).

• Réécriture via Lt(x) ⇒ calcul tractable de P et π.

• Relation d’échelle ⇒ exposants de persistance exacts.

• Le calcul du propagateur P constitue une généralisation exacte du

théorème central limite à un cas précis de sommes de variables

fortement corrélées : les incréments des SIRWs.
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Vers une théorie générale
de l’exploration
non-markovienne

Peut-on quantifier la tendance d’un processus
quelconque à toujours explorer dans la même

direction ?



Question centrale

Évolution de l’indice boursier S&P500 de Juillet 2024 à Mai 2025.
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Question centrale

Q : Comment prédire ces changements soudains de tendance, d’un

maximum historique à un krach significatif ?

Nous appellerons ces événements des flips.
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Flip : Définition et intérêt

• Le flip est une transition entre deux bords du domaine visité

[xmin, xmax].

• Après avoir découvert un nouveau site en xmax, le marcheur flip s’il

atteint xmin − 1 avant xmax + 1 (ou vice-versa).

• Quantifie la persistence dans l’exploration (ex. crash boursier

après un pic).

• On note πn la probabilité de flip après avoir découvert un domaine

de taille n.
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• On note πn la probabilité de flip après avoir découvert un domaine

de taille n.

46
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Flip : Illustration

On peut voir les sites visités comme de la nourriture : rouge à droite,

bleue à gauche. Un flip survient lorsque le marcheur consomme à la suite

deux sites de couleurs différentes.

πn 1− πn

n

Dans cette analogie, un flip correspond au changement de direction de

recherche de nourriture pour un animal.
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Contexte et défis

• Nous avons vu qu’on peut quantifier exactement l’exploration de

certaines marches non-markoviennes, lorsque le type de mémoire est

défini a priori.

• Mais dans les systèmes réels (biologie, finance. . . ), la mémoire est

souvent inconnue et doit être modélisée à partir des données.

• Exemple : les marches auto-interagissantes reproduisent fidèlement

le comportement de certaines cellules [d’Alessandro et al].

En revanche, pour des séries temporelles comme le S&P, aucun

modèle ne fait consensus.

• Pourtant, prédire les flips — ex. krachs — est essentiel pour

comprendre et prédire l’évolution du système.

Comment alors estimer la probabilité de flip, sans connâıtre la

mémoire du système ?
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Universalité de la probabilité de flip

• Sans conditionnement sur la visite de l’intervalle [xmin, xmax], la

probabilité de flip πn se réduit à la probabilité de splitting Q que,

partant de xmax, le marcheur visite xmin − 1 avant xmax + 1.

• Sa décroissance avec la taille n ≡ xmax − xmin dépend du processus

[Zoia et al]:

Q ∝ 1/ndwθ.

• En revanche, nous allons montrer que la probabilité de flip πn, elle, a

une décroissance universelle (!):

πn ∼ A

n
.

• La mémoire de l’intervalle visité a donc un effet universel sur la

probabilité de flip et donc sur l’exploration future du processus: on

peut quantifier les flips sans connâıtre le processus sous-jacent!
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probabilité de flip et donc sur l’exploration future du processus: on

peut quantifier les flips sans connâıtre le processus sous-jacent!
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Preuve de l’universalité du scaling en 1/n

• Idée clé : Si le marcheur flip au (n + 1)-ème site visité xn+1, après

xn, c’est qu’il a attendu un temps τn assez long avant de le visiter.

• En effet, si τn est trop court, le marcheur n’a pas le temps de

parcourir tout le domaine visité: il reste près de xn, et xn+1 est alors

du même signe que xn.

• Il faut donc que τn ≳ n1/dw , le temps typique pour traverser le

domaine visité.

• Ce temps est distribué comme [Régnier et al.] :

P(τn = τ) ∼ 1

n1+1/dw
ψ
( τ

n1/dw

)

• D’où la compensation universelle entre les exposants:

πn ∝
∫ ∞

n1/dw
P(τn = τ)dτ ∼ A

n
.
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• Idée clé : Si le marcheur flip au (n + 1)-ème site visité xn+1, après
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• Idée clé : Si le marcheur flip au (n + 1)-ème site visité xn+1, après
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Confirmation sur des modèles non-markoviens paradigmatiques
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En noir : Comportement en 1/n universel. En rouge : Comportement

de la probabilité de splitting classique non-universelle Q ∝ n−dwθ.
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Confirmation sur données réelles : traceurs biologiques et ADN
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La relation πn ∝ 1/n est toujours vérifiée, sans même avoir besoin de

modéliser le processus ou son type de mémoire.
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Confirmation sur données réelles : indices boursiers
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(c) Dow Jones

Observable robuste pour estimer la tendance directionnelle (hausse vs.

baisse) d’un indice boursier.

Tous les indices présentent un même préfacteur A ≈ 0,8 : reflet de

l’économie mondiale ?

Cette décroissance en 1/n est valide sur une plage d’exemples

incroyablement variée (biologie, finance, ...), sans inférence du

modèle, et sans fit. Elle reflète donc une loi statistique universelle.
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Le préfacteur A

• La décroissance universelle πn ∼ A/n ne dépend pas du processus,

mais le préfacteur A, lui, caractérise sa mémoire.

• Dans la classe des processus pour lesquels les flips sont

indépendants, on peut calculer A exactement :

A = dwθ.

• Cette classe inclut de nombreux processus non-markoviens

importants, ceux qui perdent la mémoire après un flip : marches

de Lévy, particules actives, SATW. . .

• Mais si les flips sont corrélés, peut-on encore accéder à A ? Et ainsi

quantifier exactement la persistance dans l’exploration ?

Réponse : Oui ! On peut calculer la valeur exacte du préfacteur dans

de nombreux cas non triviaux. Mais contrairement à l’argument de

scaling, les calculs sont techniques et spécifiques au type de mémoire

présent dans le processus.

54
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quantifier exactement la persistance dans l’exploration ?
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Préfacteur A pour les SIRWs (1/5)

Pour calculer la probabilité de flip πn d’une marche auto-interagissante, il

faut connâıtre :

1. Le profil de temps local d’arête (LTxn
(x))x , au moment où le

marcheur visite son n-ième site xn ;

2. L’influence de ce profil initial sur la probabilité que le prochain site

visité xn+1 soit d’un signe opposé à xn.

On se concentre sur la TSAW, pour laquelle (LTxn
(x))x est connu : c’est

un mouvement brownien à grande échelle [Tóth, Werner].
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Préfacteur A pour les SIRWs (2/5)

On calcule la probabilité jointe A+(z) dz que :

1. Le domaine exploré soit [−(1− z), z ], avec z le dernier site visité ;

2. Le prochain site visité soit −(1− z)− dz (flip).

Alors, le préfacteur total s’écrit :

A = 2

∫ 1

0

A+(z) dz .

Objectif : exprimer A+(z) à l’aide du temps local d’arête.
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A = 2

∫ 1

0

A+(z) dz .
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Préfacteur A pour les SIRWs (3/5)

Noir : profil initial du temps local d’arête à la visite de [−(1− z), z ] en

terminant en z .

Rouge : profil typique à la visite de z + dz sans flip.

Bleu : profil typique à la visite de z + dz avec flip.
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Bleu : profil typique à la visite de z + dz avec flip.

57
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Préfacteur A pour les SIRWs (4/5)

A+(z) est la probabilité que le processus bleu reste au-dessus du noir : un

mouvement brownien qui ’saute’ au-dessus d’un autre brownien.

Difficulté : le brownien noir part de 0 au ’temps’ z , est réfléchi en 0

jusqu’au temps 0, et n’est absorbé en 0 qu’au ’temps’ −(1− z)...
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Préfacteur A pour les SIRWs (4/5)
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Calcul de la probabilité de ‘saute-mouton’ (5/5)

On considère les deux browniens 1D comme un seul mouvement

brownien 2D (Y1,Y2).

• Durée z : mouvement dans un quart de plan absorbant.

• Durée 1− z : mouvement dans un huitième de plan absorbant.

On compte les trajectoires non-absorbées dans ces géométries ⇒ A+(z).
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Calcul de la probabilité de ‘saute-mouton’ (5/5)

On considère les deux browniens 1D comme un seul mouvement

brownien 2D (Y1,Y2).

• Durée z : mouvement dans un quart de plan absorbant.

• Durée 1− z : mouvement dans un huitième de plan absorbant.

On compte les trajectoires non-absorbées dans ces géométries ⇒ A+(z).
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59



Résultat final

On obtient après de longs calculs :

A =
4

π2
.

Ce résultat diffère du cas de flips indépendants (qui donne

A = dwθ = 1/2). Les flips sont ici corrélés, ce qui modifie A de manière

non triviale, mais calculable.

Ce résultat est valable pour toutes les marches auto-répulsives qui ne

saturent pas (TSAW, PSRW, SESRW...).

À notre connaissance, l’expression πn = 4
nπ2 constitue le premier

résultat exact pour une observable vieillie dans le cadre des SIRWs.
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Confirmation numérique : cas des SIRWs
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On retrouve exactement A = 4
π2 !

Le calcul de A peut être mené dans d’autres cas, en utilisant des outils

adaptés au processus en question.
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Confirmation numérique : cas du fBM

Pour ce processus gaussien non-markovien, nous avons utilisé des outils

de théorie des champs [Wiese] pour calculer perturbativement:

A = 1− 4

(
12 log(G)− γ − 7

3
log(2)

)
ε+O(ε2)

où ε = d−1
w − 1

2 quantifie l’écart à la markovianité.
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Conclusion

• Nous avons introduit une observable clé : la probabilité de flip,

mesurant la persistance directionnelle dans l’exploration.

• Elle constitue une brique élémentaire pour décrire l’exploration de

processus à mémoire.

• Sa décroissance universelle πn ∼ A/n s’observe quelle que soit la

nature du processus.

• Cette universalité est rare et précieuse dans le cadre non-markovien,

où peu de résultats analytiques sont accessibles.

• Le calcul du préfacteur A, bien que technique et difficile, peut être

mené à bien pour plusieurs classes de processus.

• Le formalisme peut être généralisé à d > 1, ou à un

conditionnement plus riche sur l’histoire du processus.

63



Conclusion

• Nous avons introduit une observable clé : la probabilité de flip,
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Conclusion générale

• Nous avons exploré comment la mémoire, locale ou globale,

transforme profondément l’exploration d’un processus

stochastique.

• Des méthodes analytiques poussées nous ont permis d’obtenir des

résultats exacts — une rareté dans le cadre non-markovien.

• Au-delà des modèles spécifiques, nous avons introduit une

observable simple mais puissante : la probabilité de flip, dont la

décroissance universelle révèle un comportement robuste à travers

les types de mémoire.

• Ces résultats suggèrent l’existence d’une géométrie émergente de

l’exploration, façonnée par la mémoire, et potentiellement décrite

par des lois universelles.

64



Conclusion générale
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Merci pour votre attention !
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