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Introduction

Pourquoi et comment utiliser I'aléatoire pour décrire
des phénomeénes physiques 7
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Physique statistique et aléatoire (1/2)

e En physique statistique, on utilise des outils probabilistes pour
modéliser des systemes complexes soumis a des fluctuations.

e Ces fluctuations peuvent étre d’origine déterministe, mais trop
complexes pour étre décrites précisément.

e Exemple classique : le lancer d'un dé obéit aux lois déterministes de
la mécanique, mais la face obtenue est imprévisible en pratique—on
modélise cela par de |'aléatoire.

e De la méme facon, une particule, une cellule, un animal... peut avoir
un comportement aléatoire.

e Sa trajectoire devient alors une réalisation d’un processus
stochastique.
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Physique statistique et aléatoire (2/2)

e Exemples de systemes physiques modélisés par des processus
stochastiques :

e Mouvement brownien d'un grain de pollen (= 5um) a la surface de
I'eau — observé par Brown (1827), modélisé par Einstein (1905)

e Une cellule immunitaire (/= 7um) explorant un tissu a la recherche
d'un pathogene

e Une fourmi (= 1lcm) cherchant son nid via les phéromones laissées
par ses congénéres...

e Dans cette these, on s'intéresse a la maniére dont ces processus
explorent I'espace : efficacité a localiser des cibles, probabilité d’en
atteindre une avant une autre, etc.
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Observables statistiques liées a I’exploration

L’exploration de I'’espace par un marcheur aléatoire est caractérisée par
plusieurs observables paradigmatiques :

(.’L‘ =Ty, tf)
(z = z0,t =0) (z = o,t = 0) (x = x0,t =0)
(a) Propagateur P (b) Premier passage F (c) Splitting m

("temps pour trouver une  ('compétition entre deux
cible’) cibles')

Ces observables fondamentales font I'objet de nombreuses études
[Redner,Schehr,Bénichou,Voituriez,Majumdar...]
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e |eur dynamique, bien qu'aléatoire, est sans mémoire, car |'état
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e Ces modeles décrivent de nombreux phénomeénes physiques
classiques (diffusion thermique, réactions chimiques...).

e Leur caractére markovien permet un calcul des observables P, F, .
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e La plupart des systemes réels violent la propriété de Markov :
|"état futur dépend de la trajectoire passée.

e Ces processus sont dits non-markoviens, et impliquent des effets
de mémoire a long terme.

Exemples concrets :

e Fourmis, cellules modifiant leur environnement local (traces de
phéromones, modification de la matrice extracellulaire...)

e Corrélations a longue portée dans les marchés financiers...
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“non-markovien” ? (1/2)

Contrairement aux processus markoviens, |'évolution d'un processus
non-markovien ne dépend pas seulement de |'état présent, mais de
la trajectoire passée entiere.

Cette mémoire émerge souvent de |'évolution stochastique de
degrés de liberté cachés, internes (ex. réactions biochimiques) ou
externes (couplage avec I'environnement).

Il n'existe pas, a ce jour, de cadre analytique général pour traiter ces
processus — pourtant omniprésents dans les systémes réels.

Le calcul des observables classiques P, F,m constitue alors un vrai
défi.
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Que signifie “non-markovien” ? (2/2)

Conséquences typiques :

e Vieillissement : les observables dépendent de I'dge du systéme
e Diffusion anormale : (x?(t)) ~ t* avec u # 1

e Propagateurs non gaussiens = échec du théoreme central limite
= fortes corrélations dans les incréments

e Multiscaling, piégeage, transitions dynamiques...

Objectif : A partir de modeles simples et d'observables bien choisies, on
veut comprendre les effets de la mémoire sur I’exploration.
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Stratégie de la these (1/2)

e Etudier analytiquement des modeles minimaux non-markoviens
issus de la littérature, construits a partir de mécanismes simples et
physiquement pertinents :

e Mémoire spatiale locale
e Auto-interaction
e Corrélations temporelles dans les incréments.

e Quantifier I'effet de la mémoire sur |'exploration de ces processus.

e Mettre en lumiére des structures communes dans la diversité des
dynamiques non-markoviennes.

10
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dépend du temps passé dans certaines régions de |'espace.
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Stratégie de la these (2/2)

Trois axes d’étude :
1. Marches activées localement — la dynamique du marcheur
dépend du temps passé dans certaines régions de |'espace.

2. Marches auto-interagissantes — le marcheur laisse derriere lui des
empreintes qui modifient sa trajectoire future (effet “Petit Poucet™).

3. ldentification d’observables universelles pour quantifier

exploration et vieillissement.

11



Marches activées
localement

Quel est I'impact d’une perturbation localisée sur
I'exploration ?
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lllustration et motivation

Q : Comment analyser la statistique d'un processus dont la dynamique
dépend du passé, a travers le nombre de passages dans certaines régions
de I'espace ?

i

O

Défi : Le processus x(t) n'est pas markovien : la dynamique dépend de
I'histoire, et réciproquement. 13
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La LARW : une marche a mémoire locale

e La LARW est une marche aléatoire x(t) en temps continu sur Z9.

L'origine est un point chaud : un site ou le marcheur est activé.

L'activation a du marcheur est le temps passé sur le point chaud:

a(t) = /Oté(x(t’)) dt'.

Le taux de saut (vitesse) 7(a)~! dépend de I'activation. Si 7(a)
croit, la LARW décélere a chaque passage au point chaud; si 7(a)
décroit, elle accélere.

14
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Contexte et état de l'art

e Modele introduit par [Bénichou et al] pour une marche
unidimensionnelle en espace continu.

e Inspiré du comportement de certaines cellules immunitaires (cellules
dendritiques), dont la dynamique évolue aprés des contacts
prolongés avec des contraintes mécaniques locales [Moreau et al].

e S'inscrit dans la famille des modeles non-markoviens
fondamentaux ou la trajectoire passée influence la dynamique
future : marche auto-interagissante
[T6th,Dumaz,Amit,Peliti,Parisi,Barbier—Chebbah], de I'éléphant
[Schiitz,Bertoin], ou du singe [Boyer].

e Le propagateur P de la LARW n'est connu qu'en d =1 et en
espace continu. Que dire de P en dimension d quelconque ?

15
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Objectif de I'étude

e Comment la mémoire locale caractéristique des LARWSs affecte-t-elle
|'exploration de |'espace ?

e Pour y répondre, on calcule le propagateur P(x, t).

e Notre approche permet en réalité d'obtenir la distribution jointe
P(x, a, t).

16
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17



Principe de la méthode

Le probleme semble complexe : la dynamique a I'instant t dépend de
I’ensemble des retours au point chaud survenus pour t' < t, qui
eux-mémes dépendent de la dynamique...

Idée centrale : entre deux retours successifs au point chaud, I'activation
a reste constante, et la trajectoire est donc markovienne.

17



Principe de la méthode

Le probleme semble complexe : la dynamique a I'instant t dépend de
I’ensemble des retours au point chaud survenus pour t' < t, qui
eux-mémes dépendent de la dynamique...

Idée centrale : entre deux retours successifs au point chaud, I'activation
a reste constante, et la trajectoire est donc markovienne.

Sauter au temps [’

Rester sur le point t
chaud pendant ¢/f /_\
P(a+da,t+ dt,x =0) = —.— + dt/ . e o o
ta t,a+da

0 -—_

Revenir au temps |

17



Obtention de P(0, a, t)

L'approche précédente conduit a I'équation fondamentale :

P todt!
0,P(0, 2, £)+0,P(0, a, ) = — (SE:)’%/O P2 V)F 0l ).
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Obtention de P(0, a, t)

L'approche précédente conduit a I'équation fondamentale :

P todt!
0,P(0, 2, £)+0,P(0, a, ) = — (SE:)’%/O P2 V)F 0l ).

Pour résoudre cette équation, on introduit la transformée de Laplace
temporelle :

F(s) = /0 T oSt (1) .

La transformée de Laplace de la loi du temps d'attente est:

1

€a(s) = e

18



Détermination de P(0, a, s)

On obtient une expression explicite pour P(0, a, s) :

P(0, a,s) = exp (/Oa ng(b)li,b(Olaﬁb)) '

ol P4(x|y,&) est la fonction génératrice de la marche non-activée (nue).

On peut en déduire la loi jointe exacte:

a5y = POI0E) (7 db
P(x,a,s)*Pd(olo,fa) p< /o T(b)bed(OO»fb))
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Détermination de P(0, a, s)

On obtient une expression explicite pour P(0, a, s) :

P(0, a,s) = exp (/Oa ng(b)li,b(Olaﬁb)) '

ol P4(x|y,&) est la fonction génératrice de la marche non-activée (nue).

On peut en déduire la loi jointe exacte:

a5y = POI0E) (7 db
P(x,a,s)*Pd(olo,fa) p( /0 T(b)bed(OO»fb))

Cette expression est inédite : la loi jointe de la position x et du temps a

passé en 0 n'est, a notre connaissance, pas connue méme pour des
marches markoviennes non-activées.

Pour expliciter les calculs, on adopte ensuite la marche aléatoire simple
comme marche nue, mais le résultat reste valable pour tout type de

marche, sur tout type de graphe. .
1



Conséquences selon la dimension de I'espace

e d =1,2: récurrence = retours fréquents au point chaud
= le marcheur est repoussé du point chaud en cas d'accélération,
attiré en cas de décélération.
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= le marcheur est repoussé du point chaud en cas d'accélération,
attiré en cas de décélération.

e d > 3 : transience = le point chaud n'est visité qu'un nombre fini
de fois = les effets de mémoire sont plus subtils.

e Pour tout d : P reste non-gaussien = les incréments sont
fortement corrélés, méme sous I'effet d’une perturbation locale.
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Extension a plusieurs points chauds

Que se passe-t-il si on ajoute plusieurs points chauds ?

e Si les points chauds forment un réseau périodique : |'activation
devient déterministe a long temps, a(t) ~ 7 (argument
ergodique).
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Extension a plusieurs points chauds

Que se passe-t-il si on ajoute plusieurs points chauds ?

e Si les points chauds forment un réseau périodique : |'activation
devient déterministe a long temps, a(t) ~ 7 (argument
ergodique).

e |a statistique devient asymptotiquement gaussienne.

e Idem si les points chauds sont distribués avec une densité p > 0.
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Mémoire relaxée

Modele relaxant : les points chauds sont toujours distribués
périodiquement (période L), mais I'activation décroit selon un taux 7 :

2 — Lhu(x(8)) — (1) ®
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Conclusion

e La LARW est un modele minimal de marcheurs perturbés
localement, comme des cellules immunitaires.
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Conclusion

e La LARW est un modele minimal de marcheurs perturbés
localement, comme des cellules immunitaires.
e Dans toutes les dimensions, elle présente une statistique clairement
non-gaussienne.
e La diffusion est généralement anormale : (x3(t)) oc t, avec p # 1.
e End=12:
e Accélération : expulsion du point chaud
e Décélération : localisation sur le point chaud.
e Si la densité de points chauds est p > 0 (finie) : les effets de
mémoire deviennent triviaux
= comportement gaussien a long temps.
e La relaxation (physiquement inévitable) réintroduit des effets de
mémoire non triviaux, méme en présence de plusieurs points
chauds.
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Marches
auto-interagissantes

Aprés avoir vu l'effet d’'une mémoire externe
localisée, que se passe-t-il si le marcheur construit
sa propre mémoire 7



Q : Comment quantifier I'exploration spatiale d'une marche

auto-repoussée ou auto-attirée?
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lllustration et motivation

Q : Comment quantifier I'exploration spatiale d'une marche

auto-repoussée ou auto-attirée?

Défi . Cette fois-ci, le marcheur construit dynamiquement son propre
environnement, et la mémoire est faite de toute la trajectoire passée.
25



on et idée générale

e La SIRW (marche auto-interagissante) est une marche aléatoire en
espace et temps discrets sur Z.
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SIRW : Définition et idée générale

e La SIRW (marche auto-interagissante) est une marche aléatoire en
espace et temps discrets sur Z.

e La probabilité de transition dépend de I'historique du marcheur via
le temps local des arétes L;(x), nombre de traversées de |'aréte
{x,x+1}:

Pe(x £ 1]x) o< w(Ly(x £1)).
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: Définition et idée générale

e La SIRW (marche auto-interagissante) est une marche aléatoire en
espace et temps discrets sur Z.

e La probabilité de transition dépend de I'historique du marcheur via
le temps local des arétes L;(x), nombre de traversées de |'aréte
{x,x+1}:

Pe(x £ 1]x) o< w(Ly(x £1)).

e Si w(n) décroit, la marche est répulsive (exploratrice), si w(n)
croit, elle est attractive (timide).

e Exemple : le modéle séminal TSAW d'Amit—Parisi—Peliti, défini par
w(n) = e~#", est donc répulsif.
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SIRW : lllustration de la définition

27



SIRW : lllustration de la définition
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Trois grandes classes universelles de SIRW

Trois grandes classes de SIRWs [Téth]:
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Trois grandes classes de SIRWs [Téth]:

e SATW, : w(n) =0n0/¢+ (1 —0no0) [Répulsive si ¢ < 1]
e PSRW, : w(n)=n"" [Répulsive]
e SESRW, 5 : w(n) = e #" [Répulsive]

L'appartenance a une classe dépend du comportement asymptotique de

w(n).

Ainsi, toutes les SIRWs dont I'auto-interaction sature tombent dans la
classe SATW,,.

De méme, les SIRWs dont I'auto-interaction dépend uniquement du
gradient du temps local des arétes tombent dans la classe TSAW
(SESRW .1 ).

On écarte les marches attractives non saturantes, qui sont soit piégées,
soit ont un comportement non physique [Pemantle, Diaconis, Davis].
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Motivations expérimentales et théoriques

e Modele tres naturel : un marcheur réel interagit avec son
environnement. Si cette interaction est locale, la SIRW en donne
une modélisation fidele.
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Motivations expérimentales et théoriques

e Modele tres naturel : un marcheur réel interagit avec son
environnement. Si cette interaction est locale, la SIRW en donne
une modélisation fidele.

e Ce type de dynamique est observé chez des micro-organismes et des
cellules [Golestanian et al., d'Alessandro et al], des fourmis
[Dussutour et al.], et méme des algorithmes d'échantillonnage
[Maggs].

e Modele central en mathématiques : objet de nombreux travaux
théoriques profonds [Téth, Werner, Dumaz, Pemantle, Yor..].

e Difficulté intrinseque : le modele reste mal compris. De nombreuses
observables restent inaccessibles : P, F ...

e Objectif : proposer une stratégie permettant un calcul exact de ces
observables.
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Contexte théorique : état de l'art

e Le comportement d'échelle x(t) ~ t¥/% est connu [Amit et al,

Téth] -
L [2 diffusif (SATW,,, PSRW.,)
Y222 <2, super-diffusif (SESRW,, ).
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Contexte théorique : état de l'art

e Le comportement d'échelle x(t) ~ t¥/% est connu [Amit et al,

Téth] -
L [2 diffusif (SATW,,, PSRW.,)
Y222 <2, super-diffusif (SESRW,, ).

e Seules quelques observables ont été calculées : splitting 7 et temps
de premier passage F de la SATW, [Carmona, Petit, Yor], et
propagateur P de la TSAW [Dumaz et Téth].
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Nos résultats principaux

Nous avons obtenu de facon exacte :

e |'exposant de persistance 0, qui caractérise la décroissance
algébrique du temps de premier passage :

F(x,t) ~t7179,
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Nos résultats principaux

Nous avons obtenu de facon exacte :

e |'exposant de persistance 0, qui caractérise la décroissance
algébrique du temps de premier passage :

F(x,t) ~t7179,

Sa détermination est un probléme central en physique statistique
[Bray et al., Derrida-Hakim-Pasquier], et réputée difficile pour un
processus non-markovien quelconque.

e La probabilité de splitting .

e Le propagateur P pour les classes SATW, et PSRW.,. Méme leur
coefficient de diffusion (x?(t)) = 2Dt était inaccessible !

Le calcul explicite de ces observables représentait un probleme ouvert
important, tant en physique qu’en mathématiques.
Nous détaillons ici notre stratégie pour le calcul de 7, puis de celui des

exposants de persistance 6.
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Stratégie de calcul de la probabilité de splitting 7

e Soit Ty le premier instant ou la SIRW atteint le site k.

33



Stratégie de calcul de la probabilité de splitting 7

e Soit Ty le premier instant ou la SIRW atteint le site k.

e On note g, (k, L) la loi du nombre L+ 1 de sites visités a I'instant
Tk.
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Stratégie de calcul de la probabilité de splitting 7

e Soit Ty le premier instant ou la SIRW atteint le site k.

e On note g, (k, L) la loi du nombre L+ 1 de sites visités a I'instant
Tk.

e La probabilité de splitting 7 de toucher k avant —m s'écrit:

k+m—1

W(Ka_m): Z q+(kvj)

J=k
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Stratégie de calcul de la probabilité de splitting 7

e Soit Ty le premier instant ou la SIRW atteint le site k.
e On note g, (k, L) la loi du nombre L+ 1 de sites visités a I'instant
Tk.
e La probabilité de splitting 7 de toucher k avant —m s'écrit:
k4+-m—1
w(k,—m)= > qi(k.J).
j=k

e |l suffit donc de connaftre la distribution du support du temps
local d’aréte.
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lllustration : temps local d’aréte et support

144
121
104

LT4(x)

O N = O

-8 4 0 4
X

Figure 2: Nombre de traversées de chaque aréte {x,x — 1}, au moment du
premier passage en k = 4. lIci, L + 1 = 14 sites ont été visités.
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lllustration : temps local d’aréte et support

144
121
104

LT4(x)

O N = O

-8 4 0 4
X

Figure 2: Nombre de traversées de chaque aréte {x,x — 1}, au moment du
premier passage en k = 4. lIci, L + 1 = 14 sites ont été visités.

q+(k, L) est donc la loi de la taille L du support de (L7, (x))x-
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Théorie de Ray-Knight pour la SIRW

e A grande échelle, [T6th] a montré que le processus (L7, (k — x))x>0
converge vers un processus de Bessel carré (BESQ;) :

dY(x) = dx +21/Y(x)dBy, Y(0)=0.
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e A grande échelle, [T6th] a montré que le processus (L7, (k — x))x>0
converge vers un processus de Bessel carré (BESQ;) :

dY(x) =ddx +2/Y(x)dBy, Y(0)=0.
e Le parameétre § est entierement déterminé par la fonction de poids w
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Il permet de connaitre la loi des variables cachées gouvernant
I"évolution du processus : la dynamique non-markovienne se ramene
a un probleme markovien tractable.
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Théorie de Ray-Knight pour la SIRW

A grande échelle, [Téth] a montré que le processus (L7, (k — x))x>0
converge vers un processus de Bessel carré (BESQ;) :

dY(x) = dx +21/Y(x)dBy, Y(0)=0.

Le parametre 9 est entierement déterminé par la fonction de poids w
de la SIRW.

Ce résultat, pourtant puissant, est presque inconnu des physiciens.
Il permet de connaitre la loi des variables cachées gouvernant
I"évolution du processus : la dynamique non-markovienne se ramene
a un probleme markovien tractable.

Notre contribution : relier la probabilité de splitting 7 a la loi du
support du temps local d’aréte (L1, (x))xez — ce lien rend possible
le calcul explicite de 7.
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lllustration : théorie de Ray-Knight

—— BESQ,.,
—— BESQs,

-06 -04 —0.2 0.0 0.2
u=ux/L

Figure 3: Temps local d'arétes pour une SATW —jog2, avec k = zL = 5000.
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lllustration : théorie de Ray-Knight

—— BESQ,.,
—— BESQs,

-06 -04 —0.2 0.0 0.2
u=ux/L

Figure 3: Temps local d'arétes pour une SATW —jog2, avec k = zL = 5000.

— On en déduit la loi de g, et donc 7.
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Résultats analytiques : Splitting =

Dans la limite L — oo, la probabilité d'atteindre zL avant —(1 — z)L est:

vy [h9) (SATW)
2 arcsin/T —z (PSRW, SESRW)

™

avec ,(a) = {52 [ (u(1 — )~ du.
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Résultats analytiques : Splitting =

Dans la limite L — oo, la probabilité d'atteindre zL avant —(1 — z)L est:

vy [h9) (SATW)
2 arcsiny/T—z (PSRW, SESRW)

avec I,(a) = u(l—u))*~ ldu.

7 ne dépend d’aucun parameétre du modele (!) dans les cas PSRW et
SESRW, suivant une loi de I'arcsinus.
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Exposants de persistance 6

On obtient I'exposant de persistance 6 (défini par F(x,t) oc t=179) 3
partir du comportement asymptotique:

m(z) < (1 —2)™% lorsque z — 1~ [Zoia et al].
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partir du comportement asymptotique:

m(z) < (1 —2)™% lorsque z — 1~ [Zoia et al].

2 (SATW,)
R (PSRW.,)
-5 (SESRW, p).

Un tel résultat est particulierement rare : pour un processus
non-markovien comme la SIRW, I'exposant de persistance est
généralement inaccessible analytiquement [Bray et al|.
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Exposants de persistance 6

On obtient I'exposant de persistance 6 (défini par F(x,t) oc t=179) 3

partir du comportement asymptotique:

m(z) < (1 —2)™% lorsque z — 1~ [Zoia et al].
2 (SATW,)
0=11% (PSRW.,,)
-5 (SESRW, p).

Un tel résultat est particulierement rare : pour un processus
non-markovien comme la SIRW, I'exposant de persistance est
généralement inaccessible analytiquement [Bray et al|.

Dans le cas SATW,, I'exposant @ peut prendre n’importe quelle valeur
positive, alors que le processus est diffusif !
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Confirmation numérique de notre expression de 6
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Confirmation numérique de notre expression de 6
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Confirmation numérique de notre expression de 6
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Résultats analytiques : propagateurs

e Les marches PSRW,, et SATW,, sont diffusives :
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Résultats analytiques : propagateurs

e Les marches PSRW,, et SATW,, sont diffusives :

e Apres avoir exprimé p a partir des temps locaux d'aréte et effectué
les calculs techniques, on obtient :

-8 (s %2)

1-¢ _2(2nte)?
= ( o ) (¢) n+ e~ 2 2nt9) '

n
n

B(, ¢)v/7 Z:; (Hw) (n+ 255 (n+ %54 !

2
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Résultats analytiques : propagateurs

e Les marches PSRW,, et SATW,, sont diffusives :

e Apres avoir exprimé p a partir des temps locaux d'aréte et effectué
les calculs techniques, on obtient :

-8 (s %2)

(1_70) (¢) nt o2 2nt$)?
p(u) = £ :

n
n

B(, ¢)v/7 Z:; (Hw) (n+ 255 (n+ %54 !

2

o Le coefficient de diffusion D est désormais accessible. Pour PSRW.,:

1 72
Dpsrw, = (27 +1) (2 + Ccatalan + 16) :
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Confirmation numérique : propagateur de la PSRW
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Conclusion

Nous avons obtenu exactement plusieurs observables clés des SIRW :
densité de premier passage F (via #), propagateur P, probabilité de
splitting .
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Conclusion

Nous avons obtenu exactement plusieurs observables clés des SIRW :
densité de premier passage F (via #), propagateur P, probabilité de
splitting .

Ces quantités (y compris le coefficient de diffusion !) étaient longtemps
restées inaccessibles, et leur détermination représentait une question
ouverte en mathématiques et en physique.

e Résultats de [Téth] = acces a la statistique des degrés de liberté
cachés du processus, L:(x).

e Réécriture via Ly(x) = calcul tractable de P et .
e Relation d'échelle = exposants de persistance exacts.

e Le calcul du propagateur P constitue une généralisation exacte du
théoreme central limite a un cas précis de sommes de variables
fortement corrélées : les incréments des SIRWs.
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Vers une théorie générale
de I'exploration
non-markovienne

Peut-on quantifier la tendance d’'un processus
quelconque a toujours explorer dans la méme
direction 7



Question centrale
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Evolution de I'indice boursier S&P500 de Juillet 2024 3 Maj 2025.
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Question centrale
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Q : Comment prédire ces changements soudains de tendance, d'un
maximum historique a un krach significatif ?
Nous appellerons ces événements des flips.
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Flip : Définition et intérét

e Le flip est une transition entre deux bords du domaine visité

[Xmim Xmax]-
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Flip : Définition et intérét

e Le flip est une transition entre deux bords du domaine visité
[Xmim Xmax] .

e Aprés avoir découvert un nouveau site en xmayx, le marcheur flip s'il
atteint Xmin — 1 avant xmax + 1 (ou vice-versa).
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atteint Xmin — 1 avant xmax + 1 (ou vice-versa).

e Quantifie la persistence dans I’exploration (ex. crash boursier

aprés un pic).
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Flip : Définition et intérét

e Le flip est une transition entre deux bords du domaine visité
[Xmim Xmax] .

e Aprés avoir découvert un nouveau site en xmayx, le marcheur flip s'il
atteint Xmin — 1 avant xmax + 1 (ou vice-versa).

e Quantifie la persistence dans I’exploration (ex. crash boursier
aprés un pic).

e On note 7, la probabilité de flip aprés avoir découvert un domaine
de taille n.
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Flip : lllustration

On peut voir les sites visités comme de la nourriture : rouge a droite,
bleue a gauche. Un flip survient lorsque le marcheur consomme a la suite
deux sites de couleurs différentes.
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Flip : lllustration

On peut voir les sites visités comme de la nourriture : rouge a droite,
bleue a gauche. Un flip survient lorsque le marcheur consomme a la suite
deux sites de couleurs différentes.

—0(..’

n

1—m,

Dans cette analogie, un flip correspond au changement de direction de
recherche de nourriture pour un animal.
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Contexte et défis

e Nous avons vu qu'on peut quantifier exactement |'exploration de
certaines marches non-markoviennes, lorsque le type de mémoire est
défini a priori.
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Contexte et défis

e Nous avons vu qu'on peut quantifier exactement |'exploration de
certaines marches non-markoviennes, lorsque le type de mémoire est
défini a priori.

e Mais dans les systémes réels (biologie, finance...), la mémoire est
souvent inconnue et doit étre modélisée a partir des données.

e Exemple : les marches auto-interagissantes reproduisent fidélement
le comportement de certaines cellules [d'Alessandro et al].
En revanche, pour des séries temporelles comme le S&P, aucun
modele ne fait consensus.

e Pourtant, prédire les flips — ex. krachs — est essentiel pour
comprendre et prédire |'évolution du systeme.
Comment alors estimer la probabilité de flip, sans connaitre la
mémoire du systeme ?
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Universalité de la probabilité de flip

e Sans conditionnement sur la visite de I'intervalle [xmin, Xmax], 2
probabilité de flip w, se réduit a la probabilité de splitting Q que,
partant de Xmax, le marcheur visite Xmin — 1 avant Xmax + 1.
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e Sans conditionnement sur la visite de I'intervalle [xmin, Xmax], 2
probabilité de flip w, se réduit a la probabilité de splitting Q que,
partant de Xmax, le marcheur visite Xmin — 1 avant Xmax + 1.

e Sa décroissance avec la taille n = Xmax — Xmin dépend du processus
[Zoia et al]:

Q x 1/ndwg.
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Universalité de la pr

e Sans conditionnement sur la visite de I'intervalle [xmin, Xmax], 2
probabilité de flip w, se réduit a la probabilité de splitting Q que,
partant de Xmax, le marcheur visite Xmin — 1 avant Xmax + 1.

e Sa décroissance avec la taille n = Xmax — Xmin dépend du processus
[Zoia et al]:

Q x 1/ndwg.

e En revanche, nous allons montrer que la probabilité de flip 7, elle, a
une décroissance universelle (!):

A
Ty~ —.
n

e La mémoire de l'intervalle visité a donc un effet universel sur la
probabilité de flip et donc sur I'exploration future du processus: on
peut quantifier les flips sans connaitre le processus sous-jacent!
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Preuve de I'universalité du scaling en 1/n

e Idée clé : Si le marcheur flip au (n + 1)-eéme site visité x,,1, aprés
Xp, C'est qu'il a attendu un temps 7, assez long avant de le visiter.
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Xp, C'est qu'il a attendu un temps 7, assez long avant de le visiter.

e En effet, si 7, est trop court, le marcheur n'a pas le temps de
parcourir tout le domaine visité: il reste prés de x,, et x,.1 est alors
du méme signe que x,.

e |l faut donc que 7, > n'/% le temps typique pour traverser le

domaine visité.

e Ce temps est distribué comme [Régnier et al.] :
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IP)(T" = T) ~ n]_+1/dw w (nl/dw)
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Preuve de I'universalité du scaling en 1/n

e Idée clé : Si le marcheur flip au (n + 1)-eéme site visité x,,1, aprés
Xp, C'est qu'il a attendu un temps 7, assez long avant de le visiter.

e En effet, si 7, est trop court, le marcheur n'a pas le temps de
parcourir tout le domaine visité: il reste prés de x,, et x,.1 est alors
du méme signe que x,.

e |l faut donc que 7, > n'/% le temps typique pour traverser le

domaine visité.

e Ce temps est distribué comme [Régnier et al.] :

1 T
IP)(T" = T) ~ n]_+1/dw w (nl/dw)

e D'ol la compensation universelle entre les exposants:
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Confirmation sur des modeéles non-markoviens paradigmatiques
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En noir : Comportement en 1/n universel. En rouge : Comportement
de la probabilité de splitting classique non-universelle Q oc n=%?.
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Confirmation sur données réelles : traceurs biologiques et ADN
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Confirmation sur données réelles : traceurs biologiques et ADN
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La relation 7, o< 1/n est toujours vérifiée, sans méme avoir besoin de
modéliser le processus ou son type de mémoire.
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Confirmation sur données réelles : indices boursiers
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Confirmation sur données réelles : indices boursiers
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Observable robuste pour estimer la tendance directionnelle (hausse vs.
baisse) d'un indice boursier.
Tous les indices présentent un méme préfacteur A ~ 0,8 : reflet de

|"économie mondiale ?

53



Confirmation sur données réelles : indices boursiers
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(a) S&P 500 (b) Nikkei 225 (c) Dow Jones

Observable robuste pour estimer la tendance directionnelle (hausse vs.
baisse) d'un indice boursier.
Tous les indices présentent un méme préfacteur A ~ 0,8 : reflet de
I'économie mondiale ?

Cette décroissance en 1/n est valide sur une plage d'exemples
incroyablement variée (biologie, finance, ...), sans inférence du
modele, et sans fit. Elle reflete donc une loi statistique universelle.
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Le préfacteur A

e La décroissance universelle m, ~ A/n ne dépend pas du processus,
mais le préfacteur A, lui, caractérise sa mémoire.
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Le préfacteur A

e La décroissance universelle m, ~ A/n ne dépend pas du processus,
mais le préfacteur A, lui, caractérise sa mémoire.

e Dans la classe des processus pour lesquels les flips sont
indépendants, on peut calculer A exactement :
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Le préfacteur A

e La décroissance universelle m, ~ A/n ne dépend pas du processus,
mais le préfacteur A, lui, caractérise sa mémoire.

e Dans la classe des processus pour lesquels les flips sont
indépendants, on peut calculer A exactement :

e Cette classe inclut de nombreux processus non-markoviens
importants, ceux qui perdent la mémoire aprés un flip : marches
de Lévy, particules actives, SATW. ..
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Le préfacteur A

e La décroissance universelle m, ~ A/n ne dépend pas du processus,
mais le préfacteur A, lui, caractérise sa mémoire.

e Dans la classe des processus pour lesquels les flips sont
indépendants, on peut calculer A exactement :

e Cette classe inclut de nombreux processus non-markoviens
importants, ceux qui perdent la mémoire aprés un flip : marches
de Lévy, particules actives, SATW. ..

e Mais si les flips sont corrélés, peut-on encore accéder a A 7 Et ainsi
quantifier exactement la persistance dans |'exploration ?
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Le préfacteur A

e La décroissance universelle m, ~ A/n ne dépend pas du processus,
mais le préfacteur A, lui, caractérise sa mémoire.

e Dans la classe des processus pour lesquels les flips sont
indépendants, on peut calculer A exactement :

e Cette classe inclut de nombreux processus non-markoviens
importants, ceux qui perdent la mémoire aprés un flip : marches
de Lévy, particules actives, SATW. ..

e Mais si les flips sont corrélés, peut-on encore accéder a A 7 Et ainsi
quantifier exactement la persistance dans |'exploration ?

Réponse : Oui ! On peut calculer la valeur exacte du préfacteur dans
de nombreux cas non triviaux.
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Le préfacteur A

e La décroissance universelle m, ~ A/n ne dépend pas du processus,
mais le préfacteur A, lui, caractérise sa mémoire.

e Dans la classe des processus pour lesquels les flips sont
indépendants, on peut calculer A exactement :

e Cette classe inclut de nombreux processus non-markoviens
importants, ceux qui perdent la mémoire aprés un flip : marches
de Lévy, particules actives, SATW. ..

e Mais si les flips sont corrélés, peut-on encore accéder a A 7 Et ainsi
quantifier exactement la persistance dans |'exploration ?

Réponse : Oui ! On peut calculer la valeur exacte du préfacteur dans
de nombreux cas non triviaux. Mais contrairement a |'argument de
scaling, les calculs sont techniques et spécifiques au type de mémoire
présent dans le processus.
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Préfacteur A pour les SIRWs (1/5)

Pour calculer la probabilité de flip 7, d'une marche auto-interagissante, il
faut connaitre :

1. Le profil de temps local d'aréte (L7, (x))x, au moment ot le
marcheur visite son n-ieme site x, ;
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Pour calculer la probabilité de flip 7, d'une marche auto-interagissante, il

faut connattre :

1. Le profil de temps local d'aréte (L7, (x))x, au moment ot le
marcheur visite son n-ieme site x, ;

2. L'influence de ce profil initial sur la probabilité que le prochain site
visité x,;1 soit d'un signe opposé a x,.
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Préfacteur A pour les SIRWs (1/5

Pour calculer la probabilité de flip 7, d'une marche auto-interagissante, il

faut connattre :

1. Le profil de temps local d'aréte (L7, (x))x, au moment ot le
marcheur visite son n-ieme site x, ;

2. L'influence de ce profil initial sur la probabilité que le prochain site
visité x,;1 soit d'un signe opposé a x,.

On se concentre sur la TSAW, pour laquelle (L7, (x))x est connu : c'est
un mouvement brownien a grande échelle [Téth, Werner].
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Préfacteur A pour les SIRWs (2/5)

On calcule la probabilité jointe Ay(z) dz que :

1. Le domaine exploré soit [—(1 — z), z], avec z le dernier site visité ;
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Préfacteur A pour les SIRWs (2/5)

On calcule la probabilité jointe Ay(z) dz que :

1. Le domaine exploré soit [—(1 — z), z], avec z le dernier site visité ;

2. Le prochain site visité soit —(1 — z) — dz (flip).
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Préfacteur A pour les SIRWs (2/5)

On calcule la probabilité jointe Ay(z) dz que :

1. Le domaine exploré soit [—(1 — z), z], avec z le dernier site visité ;

2. Le prochain site visité soit —(1 — z) — dz (flip).

Alors, le préfacteur total s'écrit :

1
A= 2/ Ai(z) dz.
0
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Préfacteur A pour les SIRWs (2/5)

On calcule la probabilité jointe Ay(z) dz que :

1. Le domaine exploré soit [—(1 — z), z], avec z le dernier site visité ;

2. Le prochain site visité soit —(1 — z) — dz (flip).

Alors, le préfacteur total s'écrit :

1
A= 2/ Ai(z) dz.
0

Objectif : exprimer A, (z) a I'aide du temps local d'aréte.
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Préfacteur A pour les SIRWs (3/5)

Locaz Tome
N

ot \

el

~(1-%) T ede X

Noir : profil initial du temps local d'aréte a la visite de [—(1 — z), z] en
terminant en z.
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Préfacteur A pour les SIRWs (3/5)

Locaz Tome
N

ot \

el

~(1-%) T ede X

Noir : profil initial du temps local d'aréte a la visite de [—(1 — z), z] en
terminant en z. Rouge : profil typique a la visite de z + dz sans flip.
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Préfacteur A pour les SIRWs (3/5)

Locaz Tome
N

ot \

el

~(1-%) T ede X

Noir : profil initial du temps local d'aréte a la visite de [—(1 — z), z] en
terminant en z. Rouge : profil typique a la visite de z + dz sans flip.
Bleu : profil typique a la visite de z 4+ dz avec flip.
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Préfacteur A pour les SIRWs (4/5)

Locaz Tome
N

ot ,

~(1-%) T ade X

A, (z) est la probabilité que le processus bleu reste au-dessus du noir : un
+
mouvement brownien qui 'saute’ au-dessus d’un autre brownien.

58



Préfacteur A pour les SIRWs (4/5)

Locaz Tome
N

ot ,

~(1-%) T ade X

A, (z) est la probabilité que le processus bleu reste au-dessus du noir : un
mouvement brownien qui 'saute’ au-dessus d’un autre brownien.
Difficulté : le brownien noir part de 0 au 'temps’ z, est réfléchi en 0

jusqu'au temps 0, et n'est absorbé en 0 qu'au 'temps’ —(1 — z)...
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Calcul de la probabilité de ‘saute-mouton’ (5/5)

b

AN
4

On considere les deux browniens 1D comme un seul mouvement
brownien 2D (Y1, Y2).
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Calcul de la probabilité de ‘saute-mouton’

> 1

On considere les deux browniens 1D comme un seul mouvement
brownien 2D (Y1, Y2).

e Durée z : mouvement dans un quart de plan absorbant.
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Calcul de la probabilité de ‘saute-mouton’

> 1

On considere les deux browniens 1D comme un seul mouvement
brownien 2D (Y1, Y2).

e Durée z : mouvement dans un quart de plan absorbant.

e Durée 1 — z : mouvement dans un huitieme de plan absorbant.

59



Calcul de la probabilité de ‘saute-mouton’

> 1

On considere les deux browniens 1D comme un seul mouvement
brownien 2D (Y1, Y2).

e Durée z : mouvement dans un quart de plan absorbant.

e Durée 1 — z : mouvement dans un huitieme de plan absorbant.

On compte les trajectoires non-absorbées dans ces géométries = A (z).
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Résultat final

On obtient apres de longs calculs :
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Résultat final

On obtient apres de longs calculs :

A=

w2

Ce résultat differe du cas de flips indépendants (qui donne
A=d,0 =1/2). Les flips sont ici corrélés, ce qui modifie A de maniere
non triviale, mais calculable.
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Ce résultat est valable pour toutes les marches auto-répulsives qui ne
saturent pas (TSAW, PSRW, SESRW...).
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Résultat final

On obtient apres de longs calculs :

Ce résultat differe du cas de flips indépendants (qui donne
A=d,0 =1/2). Les flips sont ici corrélés, ce qui modifie A de maniere
non triviale, mais calculable.

Ce résultat est valable pour toutes les marches auto-répulsives qui ne
saturent pas (TSAW, PSRW, SESRW...).

A notre connaissance, |'expression 7, = # constitue le premier
résultat exact pour une observable vieillie dans le cadre des SIRWs.
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Confirmation numérique : cas des SIRWs

< N SR
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On retrouve exactement A = % !
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Confirmation numérique : cas des SIRWs
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TSAW PSRW

On retrouve exactement A = % !
Le calcul de A peut étre mené dans d'autres cas, en utilisant des outils
adaptés au processus en question.
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Confirmation numérique : cas du fBM

Pour ce processus gaussien non-markovien, nous avons utilisé des outils
de théorie des champs [Wiese] pour calculer perturbativement:

A=1-4 (12 log(G) — v — g Iog(2)> e+ O(£?)

ol ¢ = d,,' — 1 quantifie I'écart a la markovianité.
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Confirmation numérique : cas du fBM

Pour ce processus gaussien non-markovien, nous avons utilisé des outils

de théorie des champs [Wiese] pour calculer perturbativement:

A=1-4 (12 log(G) — v — g Iog(2)> e+ O(£?)

2 2
10 a

1073

= d,;' — 1 quantifie I'écart a la markovianité.
o g%}:&;t\
S35
T
g%‘w .
\\:‘\’*@.‘QD;\
10! n 107

fBM antipersistent, dy = 3

10! 10° n
fBM persistent, dw = %
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Conclusion

e Nous avons introduit une observable clé : la probabilité de flip,
mesurant la persistance directionnelle dans |'exploration.
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e Nous avons introduit une observable clé : la probabilité de flip,
mesurant la persistance directionnelle dans |'exploration.

e Elle constitue une brique élémentaire pour décrire I'exploration de
processus a mémoire.
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e Cette universalité est rare et précieuse dans le cadre non-markovien,
ol peu de résultats analytiques sont accessibles.
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Conclusion

e Nous avons introduit une observable clé : la probabilité de flip,
mesurant la persistance directionnelle dans |'exploration.

e Elle constitue une brique élémentaire pour décrire I'exploration de
processus a mémoire.

e Sa décroissance universelle m, ~ A/n s'observe quelle que soit la
nature du processus.

e Cette universalité est rare et précieuse dans le cadre non-markovien,
ol peu de résultats analytiques sont accessibles.

e Le calcul du préfacteur A, bien que technique et difficile, peut étre
mené a bien pour plusieurs classes de processus.

e Le formalisme peut étre généralisé a d > 1, ou a un
conditionnement plus riche sur |'histoire du processus.
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Conclusion générale




Conclusion

e Nous avons exploré comment la mémoire, locale ou globale,
transforme profondément I’exploration d'un processus
stochastique.
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Conclusion érale

e Nous avons exploré comment la mémoire, locale ou globale,
transforme profondément I’exploration d'un processus
stochastique.

e Des méthodes analytiques poussées nous ont permis d’obtenir des
résultats exacts — une rareté dans le cadre non-markovien.
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Conclusion générale

e Nous avons exploré comment la mémoire, locale ou globale,
transforme profondément I’exploration d'un processus
stochastique.

e Des méthodes analytiques poussées nous ont permis d’obtenir des

résultats exacts — une rareté dans le cadre non-markovien.

e Au-dela des modeles spécifiques, nous avons introduit une
observable simple mais puissante : la probabilité de flip, dont la
décroissance universelle révele un comportement robuste a travers
les types de mémoire.
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Conclusion générale

e Nous avons exploré comment la mémoire, locale ou globale,
transforme profondément I’exploration d'un processus
stochastique.

e Des méthodes analytiques poussées nous ont permis d’obtenir des
résultats exacts — une rareté dans le cadre non-markovien.

e Au-dela des modeles spécifiques, nous avons introduit une
observable simple mais puissante : la probabilité de flip, dont la
décroissance universelle révele un comportement robuste a travers
les types de mémoire.

e Ces résultats suggerent |'existence d'une géométrie émergente de
I'exploration, fagonnée par la mémoire, et potentiellement décrite
par des lois universelles.
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Merci pour votre attention !
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