Rémy Mahfouf

Conformal invariance of the Ising model

Les Gustins

Classical model on the square lattice

- $\mathscr G$ finite subgraph of $\mathbb Z^2$
- $\mathscr F$ the set of faces
- Fix $x \in]0;1[$, represents the cost of non-aligned neighbours

Spin configuration

$$
\sigma = (\sigma_u)_{u \in \mathcal{F}} \in \{\pm 1\}^{\mathcal{F}}
$$

Collection of contours separating opposite spins

 $\mathbb{P}_{\mathscr{G}}^{+}(\sigma):=$ 1 $Z(\mathcal{G}, x, +)$ $\chi^{\#(uv) \in \mathcal{G}, \sigma_v \neq \sigma_v}$

Partition function

 $Z(\mathcal{G}, x, +) := \sum$ $\sigma\{\pm 1\}^{\mathscr{F}}$ $\chi^{\#(uv) \in \mathscr{G}, \sigma_v \neq \sigma_v}$

Full plane measures and phase transition

n $[\sigma_0] \geq \mathbb{E}^+_{\mathscr{G}}$ *n*+1 $[\sigma_0]$

• Monotonicity corresponding to the physical intuition. Full plane (a priori different) Gibbs measures allows to construct full plane on \mathbb{Z}^2 +

- Non trivial critical point Peierls (1936)
- Value of critical point by Onsager (1944)
- Many exact computation using integrability techniques (McCoy, Wu, Baxter, Perk …)

$$
f(x) := \lim_{n \infty} \frac{1}{|{\mathcal{G}}_n|} \log Z({\mathcal{G}}_n, x, +)
$$

$$
x > x_c \qquad \qquad x_c = \sqrt{2} - 1 \qquad \qquad x < x_c
$$

• Second order phase transition

Free energy per site

Full plane measures and phase transition

n $[\sigma_0] \geq \mathbb{E}^+_{\mathscr{G}}$ *n*+1 $[\sigma_0]$

• Second order phase transition

Free energy per site

• Monotonicity corresponding to the physical intuition. Full plane (a priori different) Gibbs measures allows to construct full plane on \mathbb{Z}^2 +

$$
f(x) := \lim_{n \infty} \frac{1}{|{\mathcal{G}}_n|} \log Z({\mathcal{G}}_n, x, +)
$$

 $x > x_c$ $x_c = \sqrt{2} - 1$ $x < x_c$

 $^{+}[\sigma_{\mu}\sigma_{\nu}] \sim (1 - \sinh^{4}(2J))$ 1 4 $+[\sigma_{\mu}\sigma_{\nu}]\sim$ 1 $|y - v|$ 1 4 $\mathbb{E}^{+}[\sigma_{\mu}\sigma_{\nu}] \sim \exp(-c(x) |u - v|)$

$$
x=e^{-2J}
$$

Conformally invariant scaling limit at criticality

- Predicted by CFT physicists in the 1980's : Belavin, Polyakov, Zamolodchikov
- Numerical simulations made by Langland and coauthors
- If there is a scaling limit

 $Ψ(scaling limit) = scaling limit Ψ(Ω)$

- Introduction of SLE's by Schramm
- Introduction of discrete complex

Analysis techniques Observables by Kenyon (dimers) and Smirnov (Percolation)

Conformally invariant scaling limit at criticality

- Convergence of FK-Interfaces to SLE(16/3) by Smirnov (2006)
- Convergence of the loop ensemble to CLE(3) by Hongler and Benoist

$\Psi[\text{SLE}(\Omega)] = \text{SLE}(\Psi[\Omega])$

$\Psi\big[\mathsf{CLE}(\Omega)\big]=\mathsf{CLE}\big(\Psi\big[\Omega\big]\big)$

Conformally invariant scaling limit at criticality

• Convergence of the energy field by Hongler and Smirnov (2013)

• Convergence of general spin correlation (Chelkak, Hongler and Izyurov)

$$
\sqrt{2} \frac{\mathbb{E}_{\Omega}^+ \delta[\sigma_{a^+} \sigma_{a^-}] - \mathbb{E}_{\mathbb{C}^{\delta}}^+ [\sigma_{a^+} \sigma_{a^-}]}{\delta} \to \ell_{\Omega}(a)
$$

$$
\delta^{-\frac{n}{8}} \mathbb{E}^+_{\Omega^{\delta}} [\sigma_{u_1^{\delta}} \cdots \sigma_{u_n^{\delta}}] \to \langle \sigma_{u_1} \cdots \sigma_{u_n} \rangle_{\Omega}^+
$$

Fusion rules by Chelkak Hongler Izyurov

 $\mathcal{C}_{\Omega}(a) = |\Psi'(a)| \mathcal{C}_{\Psi(\Omega)}(\Psi(a))$

$$
\langle \sigma_{u_1} \cdots \sigma_{u_n} \rangle_{\Omega}^+ = \langle \sigma_{\Psi(u_1)} \cdots \sigma_{\Psi(u_n)} \rangle_{\Psi(\Omega)}^+ \prod_{i \le n} |\Psi'(u_i)|
$$

