Nonequilibrium signatures and phase transitions in active matter and beyond

PhD thesis of D. Martin supervised by J. Tailleur

Special thanks: C. Nardini

Collaborators: T. Arnoulx de Pirey, D. Bartolo, H. Chat´e, D. Geyer, Y. Kafri, M. Kardar, C. Nardini, J. O'byrne, A. Solon, F. Van Wijland

Laboratoire MSC universit´e de Paris

October 8, 2021

Particles exerting self-propulsion forces on their medium

Particles exerting self-propulsion forces on their medium

Synthetic

Physical mechanism 来

Quincke rollers

[Bricard et al, Nature 503]

Particles exerting self-propulsion forces on their medium

Synthetic

Physical mechanism 来

Quincke rollers

[Bricard et al, Nature 503]

Living entities Biological mechanism 来 Bacterium

Particles exerting self-propulsion forces on their medium

Synthetic

Physical mechanism

Quincke rollers

Living entities Biological mechanism 来 Bacterium

 \bullet Simplest theoretical models \longrightarrow non-Gaussian correlated fluctuations

Particles exerting self-propulsion forces on their medium

Synthetic

Physical mechanism

Quincke rollers

[Bricard et al, Nature 503]

Living entities Biological mechanism 来 Bacterium

 \bullet Simplest theoretical models \longrightarrow non-Gaussian correlated fluctuations

Particles exerting self-propulsion forces on their medium

Synthetic

Physical mechanism

Quincke rollers

[Bricard et al, Nature 503]

Living entities Biological mechanism Bacterium

 \bullet Simplest theoretical models \longrightarrow non-Gaussian correlated fluctuations

 \bullet unusual fluctuations \longrightarrow algebraic computations challenging

Particles exerting self-propulsion forces on their medium

Synthetic

Physical mechanism

Quincke rollers

[Bricard et al, Nature 503]

Living entities Biological mechanism Bacterium

 \bullet Simplest theoretical models \longrightarrow non-Gaussian correlated fluctuations

- \bullet unusual fluctuations \longrightarrow algebraic computations challenging
- steady-state distribution: unknown

 \bullet departure from equilibrium: unquantified

D. Martin (Laboratoire MSC) 2 / 28

 \bullet Active systems \longrightarrow ubiquitous in nature

 \bullet Active systems \longrightarrow ubiquitous in nature

Biological

[Ballerini et al, PNAS 105, 2008] [Poujade et al, PNAS 104, 2007]

 \bullet Active systems \longrightarrow ubiquitous in nature

Biological

[Ballerini et al, PNAS 105, 2008] [Poujade et al, PNAS 104, 2007]

Synthetic

[Geyer et al, PRX 9, 2019] [Thutupalli et al, PNAS 115, 2018]

 \bullet Active systems \longrightarrow ubiquitous in nature

Biological

[Ballerini et al, PNAS 105, 2008] [Poujade et al, PNAS 104, 2007]

Synthetic

[Geyer et al, PRX 9, 2019] [Thutupalli et al, PNAS 115, 2018]

Colloidal flocks Lines of active droplets

 \bullet Self-organization emerges from collective dynamics \longrightarrow active phase transitions

 \bullet Active systems \longrightarrow ubiquitous in nature

Biological

[Ballerini et al, PNAS 105, 2008] [Poujade et al, PNAS 104, 2007]

Synthetic

[Geyer et al, PRX 9, 2019] [Thutupalli et al, PNAS 115, 2018]

Colloidal flocks Lines of active droplets

- \bullet Self-organization emerges from collective dynamics \longrightarrow active phase transitions
- Controlling active phases \longrightarrow first step for engineering active materials

 \bullet Active systems \longrightarrow ubiquitous in nature

Biological

[Ballerini et al, PNAS 105, 2008] [Poujade et al, PNAS 104, 2007] Bird flocks **Healing tissue**

Synthetic

[Geyer et al, PRX 9, 2019] [Thutupalli et al, PNAS 115, 2018]

Colloidal flocks Lines of active droplets

- \bullet Self-organization emerges from collective dynamics \longrightarrow active phase transitions
- Controlling active phases \longrightarrow first step for engineering active materials
- **Statisical physics: minimal ingredients**

 \bullet Active systems \longrightarrow ubiquitous in nature

Biological

[Ballerini et al, PNAS 105, 2008] [Poujade et al, PNAS 104, 2007]

Synthetic

[Geyer et al, PRX 9, 2019] [Thutupalli et al, PNAS 115, 2018]

Colloidal flocks Lines of active droplets

- \bullet Self-organization emerges from collective dynamics \longrightarrow active phase transitions
- Controlling active phases \longrightarrow first step for engineering active materials
- **Statisical physics: minimal ingredients**

Motility-Induced Phase Separation (MIPS) repulsive forces

Flocking transition alignment

 Phase separation at equilibrium: attractive forces vs thermal noise \rightarrow Low $T \rightarrow$ cohesion wins: liquid-gas coexistence

- Phase separation at equilibrium: attractive forces vs thermal noise \leftarrow Low $T \rightarrow$ cohesion wins: liquid-gas coexistence
- Active particles: repulsion triggers phase-separation (MIPS) [Tailleur et al, PRL 2008]

[Martin et al. PRE 2021] [Van Der Linden et al. PRL 2019]

- Phase separation at equilibrium: attractive forces vs thermal noise \rightarrow Low $T \rightarrow$ cohesion wins: liquid-gas coexistence
- Active particles: repulsion triggers phase-separation (MIPS) [Tailleur et al, PRL 2008]

[Martin et al. PRE 2021] [Van Der Linden et al. PRL 2019]

What is the mechanism behind MIPS ?

- Phase separation at equilibrium: attractive forces vs thermal noise \rightarrow Low $T \rightarrow$ cohesion wins: liquid-gas coexistence
- Active particles: repulsion triggers phase-separation (MIPS) [Tailleur et al, PRL 2008]

[Martin et al. PRE 2021] [Van Der Linden et al. PRL 2019]

What is the mechanism behind MIPS ?

* active particle accumulate in slow regions * Repulsion slows down particles

- Phase separation at equilibrium: attractive forces vs thermal noise \rightarrow Low $T \rightarrow$ cohesion wins: liquid-gas coexistence
- Active particles: repulsion triggers phase-separation (MIPS) [Tailleur et al, PRL 2008]

[Martin et al. PRE 2021] [Van Der Linden et al. PRL 2019]

What is the mechanism behind MIPS ?

* active particle accumulate in slow regions * * Repulsion slows down particles

formation of dense clusters

- Phase separation at equilibrium: attractive forces vs thermal noise \rightarrow Low $T \rightarrow$ cohesion wins: liquid-gas coexistence
- Active particles: repulsion triggers phase-separation (MIPS) [Tailleur et al, PRL 2008]

[Martin et al. PRE 2021] [Van Der Linden et al. PRL 2019]

What is the mechanism behind MIPS ?

 $*$ active particle accumulate in slow regions $*$ Repulsion slows down particles

formation of dense clusters

- MIPS in self-propelled spheres: starts to be understood
- MIPS for generic interactions: more complex

D. Martin (Laboratoire MSC) 4 / 28

 \bullet Modelling flocking transition \rightarrow aligning interactions

 \bullet Modelling flocking transition \rightarrow aligning interactions

 \leftrightarrow Ferromagnetic alignment \rightarrow minimal active model: Vicsek Model

 \bullet Modelling flocking transition \rightarrow aligning interactions

 \leftrightarrow Ferromagnetic alignment \rightarrow minimal active model: Vicsek Model

 \bullet Modelling flocking transition \rightarrow aligning interactions

 \leftrightarrow Ferromagnetic alignment \rightarrow minimal active model: Vicsek Model

 \bullet Modelling flocking transition \rightarrow aligning interactions

 \leftrightarrow Ferromagnetic alignment \rightarrow minimal active model: Vicsek Model

 \bullet Modelling flocking transition \rightarrow aligning interactions

 \leftrightarrow Ferromagnetic alignment \rightarrow minimal active model: Vicsek Model

 \bullet Modelling flocking transition \rightarrow aligning interactions

 \leftrightarrow Ferromagnetic alignment \rightarrow minimal active model: Vicsek Model

 \bullet Modelling flocking transition \rightarrow aligning interactions

 \leftrightarrow Ferromagnetic alignment \rightarrow minimal active model: Vicsek Model

- \bullet Modelling flocking transition \rightarrow aligning interactions \leftrightarrow Ferromagnetic alignment \rightarrow minimal active model: Vicsek Model
- Point-like flying spins at speed *v*

• Phase diagram [Solon et al, PRL 114, 2015]

 \bullet Vicsek Model \longrightarrow relevant for experiments

Quincke rollers

[Bricard et al, Nature 503]

Experimental phase diagram similar to the Vicsek Model

Disordered gas **Polar bands** Polar bands **Ordered flock**

Experimental phase diagram similar to the Vicsek Model

Disordered gas Polar bands Ordered flock

Emergence of flocks in the Vicsek Model: starts to be understood

Experimental phase diagram similar to the Vicsek Model

Disordered gas Polar bands Ordered flock

Emergence of flocks in the Vicsek Model: starts to be understood

What lies beyond for more complex systems ?

The four axes of this thesis

Exact results for a single active particle

Exact results for a single active particle

MIPS in dense polar flocks

Exact results for a single active particle

Fluctuation-induced first-order flocking

MIPS in dense polar flocks

Exact results for a single active particle

Fluctuation-induced first-order flocking

MIPS in dense polar flocks

Anisotropy-induced long-ranged correlations

Part I

Exact results for a single active particle

Part II

MIPS in dense polar flocks

Fluctuation-induced first-order flocking

Anisotropy-induced long-ranged correlations

• Simplest model \longrightarrow Active Ornstein-Ulhenbeck Particles (AOUPs) [Fodor et al, PRL 117, 2016]

$$
\dot{x} = -\partial_x \phi + v \; , \qquad \tau \dot{v} = -v + \sqrt{2D} \; \eta \quad \text{with} \quad \langle v(t) v(t') \rangle = \frac{D}{\tau} e^{-|t-t'|/\tau}
$$

• Simplest model \longrightarrow Active Ornstein-Ulhenbeck Particles (AOUPs) [Fodor et al, PRL 117, 2016]

$$
\dot{x} = -\partial_x \phi + v \,, \qquad \tau \dot{v} = -v + \sqrt{2D} \eta \quad \text{with} \quad \langle v(t)v(t') \rangle = \frac{D}{\tau} e^{-|t - t'|/\tau}
$$
\n• $\tau \sim 0 \iff \text{Equilibrium, temperature } D \left\{ \begin{array}{l} \text{Boltzmann distribution } \longrightarrow P_s(x) = e^{-\frac{\phi}{D}} \\ \text{No steady-state current } \longrightarrow J = \langle \dot{x} \rangle = 0 \end{array} \right.$

• Simplest model \longrightarrow Active Ornstein-Ulhenbeck Particles (AOUPs) [Fodor et al, PRL 117, 2016]

$$
\dot{x} = -\partial_x \phi + v
$$
, $\tau \dot{v} = -v + \sqrt{2D} \eta$ with $\langle v(t)v(t') \rangle = \frac{D}{\tau} e^{-|t-t'|/\tau}$

^τ [∼] ⁰ **⇔** Equilibrium, temperature *^D*

Boltzmann distribution →
$$
P_s(x) = e^{-\frac{x}{D}}
$$

No steady-state current → $J = \langle \dot{x} \rangle = 0$

• $\tau \neq 0 \Leftrightarrow$ out-of-equilibrium $\begin{cases} \text{deviation from Boltzmann} \longrightarrow P_s(x) = e^{-\frac{\phi}{D}} + \tau.. + \tau^2.. + .. \end{cases}$ Nonzero ratchet current $\longrightarrow J = \tau^2$... + ...

• Simplest model \longrightarrow Active Ornstein-Ulhenbeck Particles (AOUPs) [Fodor et al, PRL 117, 2016]

$$
\dot{x} = -\partial_x \phi + v
$$
, $\tau \dot{v} = -v + \sqrt{2D} \eta$ with $\langle v(t)v(t') \rangle = \frac{D}{\tau} e^{-|t-t'|/\tau}$

^τ [∼] ⁰ **⇔** Equilibrium, temperature *^D*

Boltzmann distribution →
$$
P_s(x) = e^{-\frac{x}{D}}
$$

No steady-state current → $J = \langle \dot{x} \rangle = 0$

• $\tau \neq 0 \Leftrightarrow$ out-of-equilibrium $\begin{cases} \text{deviation from Boltzmann} \longrightarrow P_s(x) = e^{-\frac{\phi}{D}} + \tau.. + \tau^2.. + .. \end{cases}$ Nonzero ratchet current $\longrightarrow J = \tau^2$... + ...

• Simplest model \longrightarrow Active Ornstein-Ulhenbeck Particles (AOUPs) [Fodor et al, PRL 117, 2016]

$$
\dot{x} = -\partial_x \phi + v \;, \qquad \tau \dot{v} = -v + \sqrt{2D} \; \eta \quad \text{with} \quad \langle v(t)v(t') \rangle = \frac{D}{\tau} e^{-|t-t'|/\tau}
$$

^τ [∼] ⁰ **⇔** Equilibrium, temperature *^D*

Boltzmann distribution →
$$
P_s(x) = e^{-\frac{x}{D}}
$$

No steady-state current → $J = \langle \dot{x} \rangle = 0$

• $τ ≠ 0$ \Leftrightarrow out-of-equilibrium

deviation from Boltzmann $\longrightarrow P_s(x) = e^{-\frac{\phi}{D}} + \tau_{\cdot \cdot \cdot} + \tau^2_{\cdot \cdot \cdot} + ...$ Nonzero ratchet current $\longrightarrow J = \tau^2$... + ...

• Active Matter models \longrightarrow neglects thermal fluctuations

- Active Matter models \longrightarrow neglects thermal fluctuations
	- interplay between active and passive noises rarely studied

- Active Matter models \longrightarrow neglects thermal fluctuations interplay between active and passive noises rarely studied
- Minimal model: the AOUP with thermal noise

$$
\dot{x} = -\partial_x \phi + v + \sqrt{2T} \eta_1 , \qquad \tau \dot{v} = -v + \sqrt{2D} \eta_2
$$

- Active Matter models \longrightarrow neglects thermal fluctuations interplay between active and passive noises rarely studied
- Minimal model: the AOUP with thermal noise

$$
\dot{x} = -\partial_x \phi + v + \sqrt{2T} \eta_1 , \qquad \tau \dot{v} = -v + \sqrt{2D} \eta_2
$$

^τ = 0 **⇔** Equilibrium at temperature *^T* ⁺ *^D*

- Active Matter models \longrightarrow neglects thermal fluctuations interplay between active and passive noises rarely studied
- Minimal model: the AOUP with thermal noise

 $\dot{x} = -\partial_x \phi + v +$ √ $2T \eta_1$, $\tau \dot{v} = -v +$ √ 2*D η*²

 \leftarrow *τ* = 0 \Leftrightarrow Equilibrium at temperature $T + D$

• $\tau \neq 0$: effect of *T* on nonequilibrium signatures ?

- Active Matter models \longrightarrow neglects thermal fluctuations interplay between active and passive noises rarely studied
- Minimal model: the AOUP with thermal noise

 $\dot{x} = -\partial_x \phi + v +$ √ $2T \eta_1$, $\tau \dot{v} = -v +$ √ 2*D η*² \leftarrow *τ* = 0 \Leftrightarrow Equilibrium at temperature $T + D$

• $\tau \neq 0$: effect of *T* on nonequilibrium signatures ?

deviation from Boltzmann

- Active Matter models \longrightarrow neglects thermal fluctuations interplay between active and passive noises rarely studied
- Minimal model: the AOUP with thermal noise

 $\dot{x} = -\partial_x \phi + v +$ √ $2T \eta_1$, $\tau \dot{v} = -v +$ √ 2*D η*² \leftarrow *τ* = 0 \Leftrightarrow Equilibrium at temperature $T + D$

• $\tau \neq 0$: effect of *T* on nonequilibrium signatures ?

...but enhances it

deviation from Boltzmann

- Active Matter models \longrightarrow neglects thermal fluctuations interplay between active and passive noises rarely studied
- Minimal model: the AOUP with thermal noise

 $\dot{x} = -\partial_x \phi + v +$ √ $2T \eta_1$, $\tau \dot{v} = -v +$ √ 2*D η*² \leftarrow *τ* = 0 \Leftrightarrow Equilibrium at temperature $T + D$

1.0

J/τ $\frac{2}{J}$

• $\tau \neq 0$: effect of *T* on nonequilibrium signatures ?

...but enhances it

deviation from Boltzmann

ratchet current *J*

0.0 0.5 1.0 1.5 2.0 $\frac{1}{T}$

D. Martin (Laboratoire MSC) 9 / 28

 -2 0 2

−1 0 $\phi(x)$

Low density: Vicsek

٠

Low density: Vicsek **High density: beyond Vicsek** High density: beyond Vicsek

New phase transition active solidification

٠

Low density: Vicsek **High density: beyond Vicsek**

New phase transition active solidification

Low density: Vicsek **High density: beyond Vicsek**

New phase transition active solidification

Low density: Vicsek **High density: beyond Vicsek** High density: beyond Vicsek

New phase transition active solidification

Low density: Vicsek **High density: beyond Vicsek** High density: beyond Vicsek

New phase transition active solidification

• Standard hydrodynamic of the Vicsek model for $\rho = \langle \sum \rangle$ *i* $\delta(r-r_i)\rangle$ and $W=\langle\sum \rangle$ *i* $v_i\delta(r-r_i)\rangle$

$$
\partial_t \rho = D_\rho \partial_{xx} \rho - \partial_x W \tag{1}
$$

$$
\partial_t W + \lambda W \partial_x W = D_W \partial_{xx} W - \partial_x (v\rho) + \alpha W - a_4 W^3
$$

(2)

• Standard hydrodynamic of the Vicsek model for $\rho = \langle \sum \rangle$ *i* $\delta(r-r_i)\rangle$ and $W=\langle\sum \rangle$ *i* $v_i\delta(r-r_i)\rangle$

$$
\partial_t \rho = D_\rho \partial_{xx} \rho - \partial_x W \tag{1}
$$

$$
\partial_t W + \lambda W \partial_x W = D_W \partial_{xx} W - \partial_x (v\rho) + \alpha W - a_4 W^3 \tag{2}
$$

- Adapt it to high-density experimental features
	- Rollers' velocity drop: $v \rightarrow v(\rho)$
	- **Rollers lose orientational order:** $\alpha \rightarrow \alpha(\rho)$

• Standard hydrodynamic of the Vicsek model for $\rho = \langle \sum \rangle$ *i* $\delta(r-r_i)\rangle$ and $W=\langle\sum \rangle$ *i* $v_i\delta(r-r_i)\rangle$

$$
\partial_t \rho = D_\rho \partial_{xx} \rho - \partial_x W \tag{1}
$$

$$
\partial_t W + \lambda W \partial_x W = D_W \partial_{xx} W - \partial_x (v\rho) + \alpha W - a_4 W^3
$$

- Adapt it to high-density experimental features
	- Rollers' velocity drop: $v \rightarrow v(\rho)$
	- **Rollers lose orientational order:** $\alpha \rightarrow \alpha(\rho)$

(2)

• Standard hydrodynamic of the Vicsek model for $\rho = \langle \sum \rangle$ *i* $\delta(r-r_i)\rangle$ and $W=\langle\sum \rangle$ *i* $v_i\delta(r-r_i)\rangle$

$$
\partial_t \rho = D_\rho \partial_{xx} \rho - \partial_x W \tag{1}
$$

$$
\partial_t W + \lambda W \partial_x W = D_W \partial_{xx} W - \partial_x (v\rho) + \alpha W - a_4 W^3
$$

- Adapt it to high-density experimental features
	- Rollers' velocity drop: $v \rightarrow v(\rho)$
	- **Rollers lose orientational order:** $\alpha \rightarrow \alpha(\rho)$

Postulated phenomenologically, could be rigorously derived

(2)

New phase transition at high density

New phase transition at high density

• MIPS-like transition: linear instability, lever rule, hysteresis loops, coarsening dynamics.

New phase transition at high density

- MIPS-like transition: linear instability, lever rule, hysteresis loops, coarsening dynamics.
- \bullet Movie •

Quincke rollers experiments

Quincke rollers experiments

Striking similarities of the phase diagram

Quincke rollers experiments

• Striking similarities of the phase diagram Movie •

Part II: conclusion

• New phase transition at high ρ in roller flocks \longrightarrow active solidification

Part II: conclusion

• New phase transition at high ρ in roller flocks \longrightarrow active solidification

Described by MIPS occurring in a polar liquid

- New phase transition at high ρ in roller flocks \longrightarrow active solidification
- Described by MIPS occurring in a polar liquid
- speed reduction $+$ dense flocks of active units $=$ active solidification
- New phase transition at high ρ in roller flocks \longrightarrow active solidification
- Described by MIPS occurring in a polar liquid
- speed reduction $+$ dense flocks of active units $=$ active solidification
- Agreement of phenomenological hydrodynamics and experiments beyond the phase diagram Lever rule Hysteresis loops

Emergence of collective motion: 1 *st* or 2 *nd* order ?

→ Practical importance: existence of a band phase

Emergence of collective motion: 1 *st* or 2 *nd* order ?

→ Practical importance: existence of a band phase

Long standing debate

numerics: strong finite-size effects analytics: mean-field approximations

Emergence of collective motion: 1 *st* or 2 *nd* order ?

 \rightarrow Practical importance: existence of a band phase

Long standing debate

numerics: strong finite-size effects

analytics: mean-field approximations

Recipe: flocking models \rightarrow hydrodynamics \rightarrow linear stability \rightarrow order of the transition

- Emergence of collective motion: 1 *st* or 2 *nd* order ? \rightarrow Practical importance: existence of a band phase
- Long standing debate numerics: strong finite-size effects analytics: mean-field approximations

Recipe: flocking models \rightarrow hydrodynamics \rightarrow linear stability \rightarrow order of the transition

· Vicsek: metric alignment

Active Ising Model: hydrodynamics

 \rightarrow However, microscopic simulations disagree: why? Is it generic?

- **•** specific system but generic results
- a simplified spin model for collective motion

- **•** specific system but generic results
- a simplified spin model for collective motion

• Density
$$
\rho_j \simeq (n_j^+ + n_j^-)/a
$$
 Magnetization $m_j \simeq (n_j^+ - n_j^-)/a$

- **•** specific system but generic results
- a simplified spin model for collective motion

• Density $\rho_j \simeq (n_j^+ + n_j^-)$

$$
)/a \qquad \qquad \mathsf{Magnetization}\ \boldsymbol{m_j} \simeq (n_j^+ - n_j^-)/a
$$

• Isotropic diffusion with rate *D*

- **•** specific system but generic results
- a simplified spin model for collective motion

- Density $\rho_j \simeq (n_j^+ + n_j^-)$)/ a Magnetization $m_j \simeq (n_j^+ - n_j^-)/a$
- **•** Isotropic diffusion with rate *D*
- Active jumps with rate $v : \Theta$ jumps left, Θ jumps right.

- **•** specific system but generic results
- a simplified spin model for collective motion

- Density $\rho_j \simeq (n_j^+ + n_j^-)$)/ a Magnetization $m_j \simeq (n_j^+ - n_j^-)/a$
- **•** Isotropic diffusion with rate *D*
- Active jumps with rate $v : \Theta$ jumps left, Θ jumps right.
- Spins align with rate $W^{\pm}_{j} = \exp\left(\pm \beta \frac{m_j}{\rho_j}\right)$ $\left(\frac{m_j}{\rho_j}\right)$ \Leftrightarrow fully connected Ising Model on site j

- **•** specific system but generic results
- a simplified spin model for collective motion

- Density $\rho_j \simeq (n_j^+ + n_j^-)$)/ a Magnetization $m_j \simeq (n_j^+ - n_j^-)/a$
- **•** Isotropic diffusion with rate *D*
- Active jumps with rate $v : \Theta$ jumps left, Θ jumps right.

• Spins align with rate $W^{\pm}_{j} = \exp\left(\pm \beta \frac{m_j}{\rho_j}\right)$ $\left(\frac{m_j}{\rho_j}\right)$ \Leftrightarrow fully connected Ising Model on site j

```
Master equation + Mean-field approximation
```
Hydrodynamics for *ρ* and *m*

D. Martin (Laboratoire MSC) 16 / 28

$$
\partial_t \rho = D_\rho \partial_{xx} \rho - v \partial_x m
$$

$$
\partial_t m = D_m \partial_{xx} m - v \partial_x \rho + 2\rho \sinh\left(\beta \frac{m}{\rho}\right) - 2m \cosh\left(\beta \frac{m}{\rho}\right)
$$

$$
\partial_t \rho = D_\rho \partial_{xx} \rho - v \partial_x m
$$

$$
\partial_t m = D_m \partial_{xx} m - v \partial_x \rho + 2\rho \sinh\left(\beta \frac{m}{\rho}\right) - 2m \cosh\left(\beta \frac{m}{\rho}\right)
$$

• Landau expansion: 2ρ sinh $β^{\frac{m}{n}}$ *ρ* $\Big)$ - 2*m* cosh $\Big(\beta \frac{m}{m}\Big)$ *ρ* $= \alpha m - \gamma \frac{m^3}{2}$ $\frac{m}{\rho^2} + \mathcal{O}(m^5)$

$$
\partial_t \rho = D_\rho \partial_{xx} \rho - v \partial_x m
$$

$$
\partial_t m = D_m \partial_{xx} m - v \partial_x \rho + \alpha m - \gamma \frac{m^3}{\rho^2}
$$

- Landau expansion: $2ρ\sinh (β^{\frac{m}{2}})$ *ρ* $-\frac{2m\cosh\left(\beta\frac{m}{2}\right)}{2m}$ *ρ* $= \alpha m - \gamma \frac{m^3}{2}$ $\frac{m}{\rho^2} + \mathcal{O}(m^5)$
- Nonequilibrium model \longrightarrow Landau terms $\mathcal{F}_{MF}=\alpha m-\gamma\frac{m^3}{\rho^2}$ do not derive from a free energy

$$
\partial_t \rho = D_\rho \partial_{xx} \rho - v \partial_x m
$$

$$
\partial_t m = D_m \partial_{xx} m - v \partial_x \rho + \alpha m - \gamma \frac{m^3}{\rho^2}
$$

- Landau expansion: $2ρ\sinh (β^{\frac{m}{2}})$ *ρ* $-\frac{2m\cosh\left(\beta\frac{m}{2}\right)}{2m}$ *ρ* $= \alpha m - \gamma \frac{m^3}{2}$ $\frac{m}{\rho^2} + \mathcal{O}(m^5)$
- Nonequilibrium model \longrightarrow Landau terms $\mathcal{F}_{MF}=\alpha m-\gamma\frac{m^3}{\rho^2}$ do not derive from a free energy
- Linear stability of homogeneous profiles

 $\rightarrow \alpha = constant \rightarrow$ ordered solution linearly stable at onset

$$
\partial_t \rho = D_\rho \partial_{xx} \rho - v \partial_x m
$$

$$
\partial_t m = D_m \partial_{xx} m - v \partial_x \rho + \alpha m - \gamma \frac{m^3}{\rho^2}
$$

- Landau expansion: $2ρ\sinh (β^{\frac{m}{2}})$ *ρ* $-\frac{2m\cosh\left(\beta\frac{m}{2}\right)}{2m}$ *ρ* $= \alpha m - \gamma \frac{m^3}{2}$ $\frac{m}{\rho^2} + \mathcal{O}(m^5)$
- Nonequilibrium model \longrightarrow Landau terms $\mathcal{F}_{MF}=\alpha m-\gamma\frac{m^3}{\rho^2}$ do not derive from a free energy
- Linear stability of homogeneous profiles

 $\rightarrow \alpha = constant \rightarrow$ ordered solution linearly stable at onset

 \rightarrow continuous emergence of flocking

$$
\partial_t \rho = D_\rho \partial_{xx} \rho - v \partial_x m
$$

$$
\partial_t m = D_m \partial_{xx} m - v \partial_x \rho + \alpha m - \gamma \frac{m^3}{\rho^2}
$$

- Landau expansion: $2ρ\sinh (β^{\frac{m}{2}})$ *ρ* $-\frac{2m\cosh\left(\beta\frac{m}{2}\right)}{2m}$ *ρ* $= \alpha m - \gamma \frac{m^3}{2}$ $\frac{m}{\rho^2} + \mathcal{O}(m^5)$
- Nonequilibrium model \longrightarrow Landau terms $\mathcal{F}_{MF}=\alpha m-\gamma\frac{m^3}{\rho^2}$ do not derive from a free energy
- Linear stability of homogeneous profiles

 $\rightarrow \alpha = constant \rightarrow$ ordered solution linearly stable at onset

 \rightarrow continuous emergence of flocking

At odds with microscopic simulations

$$
\partial_t \rho = D_\rho \partial_{xx} \rho - v \partial_x m
$$

$$
\partial_t m = D_m \partial_{xx} m - v \partial_x \rho + \alpha m - \gamma \frac{m^3}{\rho^2}
$$

- Landau expansion: $2ρ\sinh (β^{\frac{m}{2}})$ *ρ* $-\frac{2m\cosh\left(\beta\frac{m}{2}\right)}{2m}$ *ρ* $= \alpha m - \gamma \frac{m^3}{2}$ $\frac{m}{\rho^2} + \mathcal{O}(m^5)$
- Nonequilibrium model \longrightarrow Landau terms $\mathcal{F}_{MF}=\alpha m-\gamma\frac{m^3}{\rho^2}$ do not derive from a free energy
- Linear stability of homogeneous profiles

 $\rightarrow \alpha = constant \rightarrow$ ordered solution linearly stable at onset

 \rightarrow continuous emergence of flocking

At odds with microscopic simulations

What did mean-field miss ?

$$
\partial_t \rho = D_\rho \partial_{xx} \rho - v \partial_x m
$$

$$
\partial_t m = D_m \partial_{xx} m - v \partial_x \rho + \alpha m - \gamma \frac{m^3}{\rho^2} + \sqrt{2\sigma \rho} \eta
$$

- Landau expansion: $2ρ\sinh (β^{\frac{m}{2}})$ *ρ* $-\frac{2m\cosh\left(\beta\frac{m}{2}\right)}{2m}$ *ρ* $= \alpha m - \gamma \frac{m^3}{2}$ $\frac{m}{\rho^2} + \mathcal{O}(m^5)$
- Nonequilibrium model \longrightarrow Landau terms $\mathcal{F}_{MF}=\alpha m-\gamma\frac{m^3}{\rho^2}$ do not derive from a free energy
- Linear stability of homogeneous profiles

 $\rightarrow \alpha = constant \rightarrow$ ordered solution linearly stable at onset

 \rightarrow continuous emergence of flocking

What did mean-field miss ? Fluctuations

$$
\partial_t \rho = D_\rho \partial_{xx} \rho - v \partial_x m
$$

$$
\partial_t m = D_m \partial_{xx} m - v \partial_x \rho + \alpha m - \gamma \frac{m^3}{\rho^2} + \sqrt{2\sigma \rho} \eta
$$

- Landau expansion: $2ρ\sinh (β^{\frac{m}{2}})$ *ρ* $-\frac{2m\cosh\left(\beta\frac{m}{2}\right)}{2m}$ *ρ* $= \alpha m - \gamma \frac{m^3}{2}$ $\frac{m}{\rho^2} + \mathcal{O}(m^5)$
- Nonequilibrium model \longrightarrow Landau terms $\mathcal{F}_{MF}=\alpha m-\gamma\frac{m^3}{\rho^2}$ do not derive from a free energy
- Linear stability of homogeneous profiles

 $\rightarrow \alpha = constant \rightarrow$ ordered solution linearly stable at onset

 \rightarrow continuous emergence of flocking

 What did mean-field miss ? Fluctuations \rightarrow renormalize the Landau terms in the dynamics of $\langle \rho \rangle$ and $\langle m \rangle$ $\mathcal{F} \rightarrow \mathcal{F}_{MF} + \Delta \mathcal{F}$

• Fluctuations $\rho = \rho_0 + \delta \rho$ and $m = m_0 + \delta m$ around homogeneous mean field

• Fluctuations $\rho = \rho_0 + \delta \rho$ and $m = m_0 + \delta m$ around homogeneous mean field \rightarrow Landau terms $\mathcal F$ perturbed

• Fluctuations $\rho = \rho_0 + \delta \rho$ and $m = m_0 + \delta m$ around homogeneous mean field \rightarrow Landau terms $\mathcal F$ perturbed

$$
\Delta \mathcal{F} = \frac{\partial \mathcal{F}}{\partial m} \langle \delta m \rangle + \frac{\partial \mathcal{F}}{\partial \rho} \langle \delta \rho \rangle + \frac{\partial^2 \mathcal{F}}{\partial m \partial \rho} \langle \delta \rho \delta m \rangle + \frac{1}{2} \frac{\partial^2 \mathcal{F}}{\partial^2 m} \langle \delta m^2 \rangle + \frac{1}{2} \frac{\partial^2 \mathcal{F}}{\partial^2 \rho} \langle \delta \rho^2 \rangle
$$

• Fluctuations $\rho = \rho_0 + \delta \rho$ and $m = m_0 + \delta m$ around homogeneous mean field \hookrightarrow Landau terms $\mathcal F$ perturbed

$$
\Delta \mathcal{F} = \frac{\partial \mathcal{F}}{\partial m} \langle \delta m \rangle + \frac{\partial \mathcal{F}}{\partial \rho} \langle \delta \rho \rangle + \frac{\partial^2 \mathcal{F}}{\partial m \partial \rho} \langle \delta \rho \delta m \rangle + \frac{1}{2} \frac{\partial^2 \mathcal{F}}{\partial^2 m} \langle \delta m^2 \rangle + \frac{1}{2} \frac{\partial^2 \mathcal{F}}{\partial^2 \rho} \langle \delta \rho^2 \rangle
$$

• Fluctuations $\rho = \rho_0 + \delta \rho$ and $m = m_0 + \delta m$ around homogeneous mean field \hookrightarrow Landau terms $\mathcal F$ perturbed

$$
\Delta \mathcal{F} = \frac{\partial \mathcal{F}}{\partial m} \langle \delta m \rangle + \frac{\partial \mathcal{F}}{\partial \rho} \langle \delta \rho \rangle + \frac{\partial^2 \mathcal{F}}{\partial m \partial \rho} \langle \delta \rho \delta m \rangle + \frac{1}{2} \frac{\partial^2 \mathcal{F}}{\partial^2 m} \langle \delta m^2 \rangle + \frac{1}{2} \frac{\partial^2 \mathcal{F}}{\partial^2 \rho} \langle \delta \rho^2 \rangle
$$

$$
\partial_t \begin{pmatrix} \delta\rho_q \\ \delta m_q \end{pmatrix} = \begin{pmatrix} M_{11}^q & M_{12}^q \\ M_{21}^q & M_{22}^q \end{pmatrix} \begin{pmatrix} \delta\rho_q \\ \delta m_q \end{pmatrix} + \begin{pmatrix} 0 \\ \sqrt{2\sigma\rho_0} \ \eta_q \end{pmatrix}
$$

• Fluctuations $\rho = \rho_0 + \delta \rho$ and $m = m_0 + \delta m$ around homogeneous mean field \rightarrow Landau terms $\mathcal F$ perturbed

$$
\Delta \mathcal{F} = \frac{\partial \mathcal{F}}{\partial m} \langle \delta m \rangle + \frac{\partial \mathcal{F}}{\partial \rho} \langle \delta \rho \rangle + \frac{\partial^2 \mathcal{F}}{\partial m \partial \rho} \langle \delta \rho \delta m \rangle + \frac{1}{2} \frac{\partial^2 \mathcal{F}}{\partial^2 m} \langle \delta m^2 \rangle + \frac{1}{2} \frac{\partial^2 \mathcal{F}}{\partial^2 \rho} \langle \delta \rho^2 \rangle
$$

$$
\partial_t \begin{pmatrix} \delta \rho_q \\ \delta m_q \end{pmatrix} = \begin{pmatrix} M_{11}^q & M_{12}^q \\ M_{21}^q & M_{22}^q \end{pmatrix} \begin{pmatrix} \delta \rho_q \\ \delta m_q \end{pmatrix} + \begin{pmatrix} 0 \\ \sqrt{2\sigma \rho_0} \eta_q \end{pmatrix}
$$

Steady-state correlators

• Fluctuations $\rho = \rho_0 + \delta \rho$ and $m = m_0 + \delta m$ around homogeneous mean field \hookrightarrow Landau terms $\mathcal F$ perturbed

$$
\Delta \mathcal{F} = \frac{\partial \mathcal{F}}{\partial m} \langle \delta m \rangle + \frac{\partial \mathcal{F}}{\partial \rho} \langle \delta \rho \rangle + \frac{\partial^2 \mathcal{F}}{\partial m \partial \rho} \langle \delta \rho \delta m \rangle + \frac{1}{2} \frac{\partial^2 \mathcal{F}}{\partial^2 m} \langle \delta m^2 \rangle + \frac{1}{2} \frac{\partial^2 \mathcal{F}}{\partial^2 \rho} \langle \delta \rho^2 \rangle
$$

$$
\partial_t \begin{pmatrix} \delta \rho_q \\ \delta m_q \end{pmatrix} = \begin{pmatrix} M_{11}^q & M_{12}^q \\ M_{21}^q & M_{22}^q \end{pmatrix} \begin{pmatrix} \delta \rho_q \\ \delta m_q \end{pmatrix} + \begin{pmatrix} 0 \\ \sqrt{2\sigma \rho_0} \eta_q \end{pmatrix}
$$

Steady-state correlators

$$
\langle \delta m \rangle = 0 \qquad \langle \delta \rho \rangle = 0 \qquad \langle \delta \rho \delta m \rangle = 0 + \mathcal{O}(m_0)
$$

$$
\langle \delta m^2 \rangle = \sigma \rho_0 \frac{v^2 \sqrt{\frac{2\alpha}{D}} + \alpha \sqrt{v^2 + \alpha D}}{8\alpha v^2 + 4\alpha^2 D} + \mathcal{O}(m_0) \qquad \langle \delta \rho^2 \rangle = \sigma \rho_0 \frac{v^2 \left(\sqrt{\frac{2\alpha}{D}} - \frac{\alpha}{\sqrt{v^2 + \alpha D}}\right)}{4\alpha (\alpha D + 2v^2)} + \mathcal{O}(m_0)
$$

• Fluctuations $\rho = \rho_0 + \delta \rho$ and $m = m_0 + \delta m$ around homogeneous mean field \hookrightarrow Landau terms $\mathcal F$ perturbed

$$
\Delta \mathcal{F} = \frac{\partial \mathcal{F}}{\partial m} \langle \delta m \rangle + \frac{\partial \mathcal{F}}{\partial \rho} \langle \delta \rho \rangle + \frac{\partial^2 \mathcal{F}}{\partial m \partial \rho} \langle \delta \rho \delta m \rangle + \frac{1}{2} \frac{\partial^2 \mathcal{F}}{\partial^2 m} \langle \delta m^2 \rangle + \frac{1}{2} \frac{\partial^2 \mathcal{F}}{\partial^2 \rho} \langle \delta \rho^2 \rangle
$$

$$
\partial_t \begin{pmatrix} \delta \rho_q \\ \delta m_q \end{pmatrix} = \begin{pmatrix} M_{11}^q & M_{12}^q \\ M_{21}^q & M_{22}^q \end{pmatrix} \begin{pmatrix} \delta \rho_q \\ \delta m_q \end{pmatrix} + \begin{pmatrix} 0 \\ \sqrt{2\sigma \rho_0} \eta_q \end{pmatrix}
$$

Steady-state correlators

$$
\langle \delta m \rangle = 0 \qquad \langle \delta \rho \rangle = 0 \qquad \langle \delta \rho \delta m \rangle = 0 + \mathcal{O}(m_0)
$$

$$
\langle \delta m^2 \rangle = \sigma \rho_0 \frac{v^2 \sqrt{\frac{2\alpha}{D}} + \alpha \sqrt{v^2 + \alpha D}}{8\alpha v^2 + 4\alpha^2 D} + \mathcal{O}(m_0) \qquad \langle \delta \rho^2 \rangle = \sigma \rho_0 \frac{v^2 \left(\sqrt{\frac{2\alpha}{D}} - \frac{\alpha}{\sqrt{v^2 + \alpha D}}\right)}{4\alpha (\alpha D + 2v^2)} + \mathcal{O}(m_0)
$$

• Landau terms $\mathcal{F} \longrightarrow \mathcal{F} + \Delta \mathcal{F}$

• Landau terms $\mathcal{F} \longrightarrow \mathcal{F} + \Delta \mathcal{F}$

$$
\alpha \longrightarrow \alpha + \frac{\sigma \gamma}{\rho v} f\left(\frac{\alpha D}{v^2}\right) + \mathcal{O}(\sigma^2) \quad \Longrightarrow \quad \alpha \text{ density dependent}
$$

• Landau terms $\mathcal{F} \longrightarrow \mathcal{F} + \Delta \mathcal{F}$

$$
\alpha \longrightarrow \alpha + \frac{\sigma \gamma}{\rho v} f\left(\frac{\alpha D}{v^2}\right) + \mathcal{O}(\sigma^2) \quad \Longrightarrow \quad \alpha \text{ density dependent}
$$

• Linear stability analysis for $\alpha(\rho)$

Homogeneous polar and disordered profiles unstable at onset

• Landau terms $\mathcal{F} \longrightarrow \mathcal{F} + \Delta \mathcal{F}$

$$
\alpha \longrightarrow \alpha + \frac{\sigma \gamma}{\rho v} f\left(\frac{\alpha D}{v^2}\right) + \mathcal{O}(\sigma^2) \quad \Longrightarrow \quad \alpha \text{ density dependent}
$$

• Linear stability analysis for $\alpha(\rho)$

Homogeneous polar and disordered profiles unstable at onset

Discontinuous emergence of flocking

• Landau terms $\mathcal{F} \longrightarrow \mathcal{F} + \Delta \mathcal{F}$

$$
\alpha \longrightarrow \alpha + \frac{\sigma \gamma}{\rho v} f\left(\frac{\alpha D}{v^2}\right) + \mathcal{O}(\sigma^2) \quad \Longrightarrow \quad \alpha \text{ density dependent}
$$

• Linear stability analysis for $\alpha(\rho)$

Homogeneous polar and disordered profiles unstable at onset Discontinuous emergence of flocking

Simulations of the stochastic PDE

Fluctuations makes the transition discontinuous

Summary of the mechanism in Active Ising Model
Summary of the mechanism in Active Ising Model

MF hydrodynamics with deceptive continuous transition

Summary of the mechanism in Active Ising Model

MF hydrodynamics with deceptive continuous transition

Summary of the mechanism in Active Ising Model

MF hydrodynamics with deceptive continuous transition

 $\downarrow \downarrow$ + fluctuations

Makes linear Landau term *α* density dependent

Summary of the mechanism in Active Ising Model

MF hydrodynamics with deceptive continuous transition

Makes linear Landau term *α* density dependent

*α***(***ρ***)**

 $\downarrow \downarrow$ + fluctuations

Summary of the mechanism in Active Ising Model

MF hydrodynamics with deceptive continuous transition

Makes linear Landau term *α* density dependent

*α***(***ρ***)**

 \downarrow \downarrow + fluctuations

Makes the transition discontinuous

Summary of the mechanism in Active Ising Model

MF hydrodynamics with deceptive continuous transition

Makes linear Landau term *α* density dependent

*α***(***ρ***)**

 \downarrow \downarrow + fluctuations

Makes the transition discontinuous

Metric models: Fluctuation-induced first-order transition

Summary of the mechanism in Active Ising Model

MF hydrodynamics with deceptive continuous transition

Makes linear Landau term *α* density dependent

Makes the transition discontinuous

*α***(***ρ***)**

 \downarrow \downarrow + fluctuations

 Metric models: Fluctuation-induced first-order transition discontinuous transition with coexistence

Summary of the mechanism in Active Ising Model

MF hydrodynamics with deceptive continuous transition

Makes linear Landau term *α* density dependent

Makes the transition discontinuous

*α***(***ρ***)**

 \downarrow + fluctuations

 Metric models: Fluctuation-induced first-order transition discontinuous transition with coexistence

• Visual or biological cues \longrightarrow 'metric-free' or 'topological' alignment

• Visual or biological cues \longrightarrow 'metric-free' or 'topological' alignment

AVA

k-nearest neighbours

Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study

M. Ballerini*1, N. Cabibbo¹⁵, R. Candelier¹¹, A. Cavagna*^{1+*}, E. Cisbani[†], I. Giardina*¹, V. Lecomte⁺¹⁺⁺, A. Orlandi*, G. Parisi**5**, A. Procaccini**, and M. Viale*55, and V. Zdravkovic*

*Centre for Statistical Mechanics and Complexity (SMC), Consiglio Nazionale delle Ricerche-Istituto Nazionale per la Fisica della Materia, "Dipartimento di Fisica, and "Sezione Instituto Nazionale di Fisica Nucleare, Universita" di Roma "La Sapierza," Piazzale Aldo Moro 2, 00185 Roma, Italy; "Istituto Superiore di Sanita, viale Regina Elena 299, 00161 Roma, Italy, Istituto dei Sistemi Complessi (ISC), Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Roma, samu , viaw nagma ciena 295, ou bi noma, nagy naudzi den sisem compassi psz, comegno Nazionae den kategoria na
Italy, and "Laboratoire Matière et Systèmes Complexes, (Centre National de la Recherche Scientifique Unite Mixt 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France

PHYSICAL REVIEW X 6.021011 (2016)

Motility-Driven Glass and Jamming Transitions in Biological Tissues

Dapeng Bi,^{1,3} Xingbo Yang,^{1,4} M. Cristina Marchetti,^{1,2} and M. Lisa Manning^{1,2}

Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi model that simultaneously captures polarized cell motility and multibody cell-cell interactions in a confluent

Voronoi neighbours

• Visual or biological cues \longrightarrow 'metric-free' or 'topological' alignment

ANA

k-nearest neighbours

Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study

M. Ballerini*1, N. Cabibbo¹⁵, R. Candelier¹¹, A. Cavagna*^{1+*}, E. Cisbani[†], I. Giardina*¹, V. Lecomte⁺¹⁺⁺, A. Orlandi*, G. Parisi*^{15**}, A. Procaccini*¹, and M. Viale¹⁵⁵, and V. Zdravkovic^{*}

*Centre for Statistical Mechanics and Complexity (SMC), Consiglio Nazionale delle Ricerche-Istituto Nazionale per la Fisica della Materia, "Dipartimento di Fisica, and "Sezione Instituto Nazionale di Fisica Nucleare, Universita" di Roma "La Sapierza," Piazzale Aldo Moro 2, 00185 Roma, Italy; "Istituto Superiore di Sanita, viale Regina Elena 299, 00161 Roma, Italy, Istituto dei Sistemi Complessi (ISC), Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Roma, samu , viaw nagma ciena 295, ou bi noma, nagy naudzi den sisem compassi psz, comegno Nazionae den kategoria na
Italy, and "Laboratoire Matière et Systèmes Complexes, (Centre National de la Recherche Scientifique Unite Mixt 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France

PHYSICAL REVIEW X 6.021011 (2016)

Motility-Driven Glass and Jamming Transitions in Biological Tissues

Voronoi neighbours

Dapeng Bi,^{1,3} Xingbo Yang,^{1,4} M. Cristina Marchetti,^{1,2} and M. Lisa Manning^{1,2}

Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi model that simultaneously captures polarized cell motility and multibody cell-cell interactions in a confluent

• topological models: 1^{st} or 2^{nd} order flocking transition?

• Visual or biological cues \longrightarrow 'metric-free' or 'topological' alignment

k-nearest neighbours

Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study

M. Ballerini*1, N. Cabibbo¹⁵, R. Candelier¹¹, A. Cavagna*^{1+*}, E. Cisbani[†], I. Giardina*¹, V. Lecomte⁺¹⁺⁺, A. Orlandi*, G. Parisi*^{15**}, A. Procaccini*¹, and M. Viale¹⁵⁵, and V. Zdravkovic^{*}

*Centre for Statistical Mechanics and Complexity (SMC), Consiglio Nazionale delle Ricerche-Istituto Nazionale per la Fisica della Materia, "Dipartimento di Fisica, and "Sezione Instituto Nazionale di Fisica Nucleare, Universita" di Roma "La Sapierza," Piazzale Aldo Moro 2, 00185 Roma, Italy; "Istituto Superiore di Sanita', viale Regina Elena 299, 00161 Roma, Italy; ktituto dei Sistemi Complexi (ISC), Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Roma, Italy; and Taurini 19, 00185 Roma, Italy; and Italy and Italy and 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France

PHYSICAL REVIEW X 6.021011 (2016)

Voronoi neighbours

Motility-Driven Glass and Jamming Transitions in Biological Tissues

Dapeng Bi,^{1,3} Xingbo Yang,^{1,4} M. Cristina Marchetti,^{1,2} and M. Lisa Manning^{1,2}

Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi model that simultaneously captures polarized cell motility and multibody cell-cell interactions in a confluent

• topological models: 1^{st} or 2^{nd} order flocking transition?

 \bullet 2^{nd} order arguments

 $numerics \longrightarrow computationally costly, finite size effects$ mean-field hydrodynamics \longrightarrow may be misleading

• Visual or biological cues \longrightarrow 'metric-free' or 'topological' alignment

k-nearest neighbours

Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study

M. Ballerini*1, N. Cabibbo¹⁵, R. Candelier¹¹, A. Cavagna*^{1+*}, E. Cisbani[†], I. Giardina*¹, V. Lecomte⁺¹⁺⁺, A. Orlandi*, G. Parisi*^{15**}, A. Procaccini*¹, and M. Viale¹⁵⁵, and V. Zdravkovic^{*}

*Centre for Statistical Mechanics and Complexity (SMC), Consiglio Nazionale delle Ricerche-Istituto Nazionale per la Fisica della Materia, "Dipartimento di Fisica, and "Sezione Instituto Nazionale di Fisica Nucleare, Universita" di Roma "La Sapierza," Piazzale Aldo Moro 2, 00185 Roma, Italy; "Istituto Superiore di Sanita', viale Regina Elena 299, 00161 Roma, Italy; ktituto dei Sistemi Complexi (ISC), Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Roma, Italy; and Taurini 19, 00185 Roma, Italy; and Italy and Italy and 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France

PHYSICAL REVIEW X 6.021011 (2016)

Voronoi neighbours

Motility-Driven Glass and Jamming Transitions in Biological Tissues

Dapeng Bi,^{1,3} Xingbo Yang,^{1,4} M. Cristina Marchetti,^{1,2} and M. Lisa Manning^{1,2}

Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi model that simultaneously captures polarized cell motility and multibody cell-cell interactions in a confluent

• topological models: 1^{st} or 2^{nd} order flocking transition?

 \bullet 2^{nd} order arguments

 $numerics \longrightarrow computationally costly, finite size effects$ mean-field hydrodynamics \longrightarrow may be misleading

 \bullet build a topological field theory \longrightarrow challenging

$$
\partial_t m = D\nabla^2 m - \nabla(v\rho) + 2\rho\Gamma\sinh\left(\beta\frac{m}{\rho}\right) - 2m\Gamma\cosh\left(\beta\frac{m}{\rho}\right)
$$

$$
\partial_t m = D\nabla^2 m - \nabla(v\rho) + 2\rho \Gamma \sinh\left(\beta \frac{m}{\rho}\right) - 2m\Gamma \cosh\left(\beta \frac{m}{\rho}\right)
$$

microscopic flipping

$$
\partial_t m = D\nabla^2 m - \nabla(v\rho) + 2\rho \Gamma \sinh\left(\beta \frac{m}{\rho}\right) - 2m\Gamma \cosh\left(\beta \frac{m}{\rho}\right)
$$

microscopic flipping

$$
W_j^{\pm} = \exp(\pm \beta \frac{m_j}{\rho_j})
$$
local aligning field

Previous full mean-field equation for active Ising

$$
\partial_t m = D\nabla^2 m - \nabla(v\rho) + 2\rho \Gamma \sinh\left(\beta \frac{m}{\rho}\right) - 2m\Gamma \cosh\left(\beta \frac{m}{\rho}\right)
$$

microscopic flipping

$$
W_j^{\pm} = \exp(\pm \beta \frac{m_j}{\rho_j})
$$

local aligning field

• Now makes it topological \rightarrow alignment with k-nearest neighbours

$$
\partial_t m = D\nabla^2 m - \nabla(v\rho) + 2\rho \Gamma \sinh\left(\beta \frac{m}{\rho}\right) - 2m\Gamma \cosh\left(\beta \frac{m}{\rho}\right)
$$

microscopic flipping

$$
W_j^{\pm} = \exp(\pm \beta \frac{m_j}{\rho_j})
$$
local aligning field

- Now makes it topological \rightarrow alignment with k-nearest neighbours
- Local interaction range $y(x) \rightarrow$ adaptation to density fluctuations

$$
\partial_t m = D\nabla^2 m - \nabla(v\rho) + 2\rho \Gamma \sinh\left(\beta \frac{m}{\rho}\right) - 2m\Gamma \cosh\left(\beta \frac{m}{\rho}\right)
$$

microscopic flipping

$$
W_j^{\pm} = \exp(\pm \beta \frac{m_j}{\rho_j})
$$

local aligning field

- Now makes it topological \rightarrow alignment with k-nearest neighbours
- Local interaction range $y(x) \rightarrow$ adaptation to density fluctuations

•
$$
k = \int_{x-y(x)}^{x+y(x)} \rho(z) dz
$$

$$
\partial_t m = D\nabla^2 m - \nabla(v\rho) + 2\rho \Gamma \sinh\left(\beta \frac{m}{\rho}\right) - 2m\Gamma \cosh\left(\beta \frac{m}{\rho}\right)
$$

microscopic flipping

$$
W_j^{\pm} = \exp(\pm \beta \frac{m_j}{\rho_j})
$$
local aligning field

- Now makes it topological \rightarrow alignment with k-nearest neighbours
- Local interaction range $y(x) \rightarrow$ adaptation to density fluctuations

•
$$
k = \int_{x-y(x)}^{x+y(x)} \rho(z)dz
$$
 • $\frac{m(x)}{\rho(x)} \to \tilde{m}(x) = \int_{x-y(x)}^{x+y(x)} \frac{m(z)}{k}dz$

$$
\partial_t m = D\nabla^2 m - \nabla(v\rho) + 2\rho \Gamma \sinh\left(\beta \frac{m}{\rho}\right) - 2m\Gamma \cosh\left(\beta \frac{m}{\rho}\right)
$$

microscopic flipping

$$
W_j^{\pm} = \exp(\pm \beta \frac{m_j}{\rho_j})
$$
local aligning field

- Now makes it topological \rightarrow alignment with k-nearest neighbours
- Local interaction range $y(x) \rightarrow$ adaptation to density fluctuations

$$
\bullet k = \int_{x-y(x)}^{x+y(x)} \rho(z)dz \quad \bullet \quad \frac{m(x)}{\rho(x)} \to \tilde{m}(x) = \int_{x-y(x)}^{x+y(x)} \frac{m(z)}{k}dz
$$

$$
\partial_t m = D\nabla^2 m - \nabla(v\rho) + 2\rho \Gamma \sinh(\beta \tilde{m}) - 2m \Gamma \cosh(\beta \tilde{m})
$$

Previous full mean-field equation for active Ising

$$
\partial_t m = D\nabla^2 m - \nabla(v\rho) + 2\rho \Gamma \sinh\left(\beta \frac{m}{\rho}\right) - 2m\Gamma \cosh\left(\beta \frac{m}{\rho}\right)
$$

microscopic flipping

$$
W_j^{\pm} = \exp(\pm \beta \frac{m_j}{\rho_j})
$$
local aligning field

- Now makes it topological \rightarrow alignment with k-nearest neighbours
- Local interaction range $y(x) \rightarrow$ adaptation to density fluctuations

$$
\bullet k = \int_{x-y(x)}^{x+y(x)} \rho(z)dz \quad \bullet \quad \frac{m(x)}{\rho(x)} \to \tilde{m}(x) = \int_{x-y(x)}^{x+y(x)} \frac{m(z)}{k}dz
$$

$$
\partial_t m = D\nabla^2 m - \nabla(v\rho) + 2\rho\text{Fsinh}(\beta\tilde{m}) - 2m\text{Fcosh}(\beta\tilde{m})
$$

 \bullet Linear stability analysis \longrightarrow continuous transition at mean field level

Previous full mean-field equation for active Ising

$$
\partial_t m = D\nabla^2 m - \nabla(v\rho) + 2\rho \Gamma \sinh\left(\beta \frac{m}{\rho}\right) - 2m\Gamma \cosh\left(\beta \frac{m}{\rho}\right)
$$

microscopic flipping

$$
W_j^{\pm} = \exp(\pm \beta \frac{m_j}{\rho_j})
$$
local aligning field

- Now makes it topological \rightarrow alignment with k-nearest neighbours
- Local interaction range $y(x) \rightarrow$ adaptation to density fluctuations

$$
\bullet k = \int_{x-y(x)}^{x+y(x)} \rho(z)dz \quad \bullet \quad \frac{m(x)}{\rho(x)} \to \tilde{m}(x) = \int_{x-y(x)}^{x+y(x)} \frac{m(z)}{k}dz
$$

$$
\partial_t m = D\nabla^2 m - \nabla(v\rho) + 2\rho\text{Fsinh}(\beta\tilde{m}) - 2m\text{Fcosh}(\beta\tilde{m})
$$

 \bullet Linear stability analysis \longrightarrow continuous transition at mean field level

Protected against fluctuations ?

Previous full mean-field equation for active Ising

$$
\partial_t m = D\nabla^2 m - \nabla(v\rho) + 2\rho \Gamma \sinh\left(\beta \frac{m}{\rho}\right) - 2m\Gamma \cosh\left(\beta \frac{m}{\rho}\right)
$$

microscopic flipping

$$
W_j^{\pm} = \exp(\pm \beta \frac{m_j}{\rho_j})
$$
local aligning field

- Now makes it topological \rightarrow alignment with k-nearest neighbours
- Local interaction range $y(x) \rightarrow$ adaptation to density fluctuations

$$
\bullet k = \int_{x-y(x)}^{x+y(x)} \rho(z)dz \quad \bullet \quad \frac{m(x)}{\rho(x)} \to \tilde{m}(x) = \int_{x-y(x)}^{x+y(x)} \frac{m(z)}{k}dz
$$

$$
\partial_t m = D\nabla^2 m - \nabla(v\rho) + 2\rho\Gamma \sinh(\beta \tilde{m}) - 2m\Gamma \cosh(\beta \tilde{m}) + \sqrt{2\sigma\rho} \eta
$$

 \bullet Linear stability analysis \longrightarrow continuous transition at mean field level

Protected against fluctuations ?

Renormalization of linear Landau term

$$
\alpha \longrightarrow \alpha + \frac{\sigma \Gamma}{k} g\left(\beta, \frac{\Gamma k}{v\rho}, \frac{\Gamma D}{v^2}\right) \Longrightarrow \alpha \text{ density dependent}
$$

Renormalization of linear Landau term

$$
\alpha \longrightarrow \alpha + \frac{\sigma \Gamma}{k} \ g\left(\beta, \frac{\Gamma k}{v \rho}, \frac{\Gamma D}{v^2}\right) \Longrightarrow \alpha \text{ density dependent}
$$

 \bullet Linear stability \longrightarrow discontinuous emergence of flocking

Renormalization of linear Landau term

$$
\alpha \longrightarrow \alpha + \frac{\sigma \Gamma}{k} \ g\left(\beta, \frac{\Gamma k}{v \rho}, \frac{\Gamma D}{v^2}\right) \Longrightarrow \alpha \text{ density dependent}
$$

- \bullet Linear stability \longrightarrow discontinuous emergence of flocking
- Simulations of the topological stochastic PDE

Renormalization of linear Landau term

$$
\alpha \longrightarrow \alpha + \frac{\sigma \Gamma}{k} \ g\left(\beta, \frac{\Gamma k}{v \rho}, \frac{\Gamma D}{v^2}\right) \Longrightarrow \alpha \text{ density dependent}
$$

- \bullet Linear stability \longrightarrow discontinuous emergence of flocking
- Simulations of the topological stochastic PDE

 \bullet So far \rightarrow predictions for field-theoretic models

Renormalization of linear Landau term

$$
\alpha \longrightarrow \alpha + \frac{\sigma \Gamma}{k} \ g\left(\beta, \frac{\Gamma k}{v \rho}, \frac{\Gamma D}{v^2}\right) \Longrightarrow \alpha \text{ density dependent}
$$

- \bullet Linear stability \longrightarrow discontinuous emergence of flocking
- Simulations of the topological stochastic PDE

 \bullet So far \rightarrow predictions for field-theoretic models

Let's try to see if it is robust for microscopic models !

Microscopic dynamics of the topological Active Ising Model

- Off-lattice Langevin particles
- * Each particles carries a spin

$$
\dot{\boldsymbol{r}}_j = s_j v \; \boldsymbol{u}_x + \sqrt{2D} \; \boldsymbol{\eta}_j
$$

Microscopic dynamics of the topological Active Ising Model

- * Off-lattice Langevin particles
- * Each particles carries a spin

 $\textsf{Flipping}\,$ rates $W_j^\pm = \Gamma \exp(\pm \beta \tilde{m}_j)$ with $\tilde{m}_j =$ averaged magnetization of k -nearest neighbours

Results of the microscopic topological Active Ising Model

Results of the microscopic topological Active Ising Model

Results of the microscopic topological Active Ising Model

• Is it model-dependent ? Only for active spins ?

Results of the microscopic topological Active Ising Model

• Is it model-dependent ? Only for active spins ? Holds also for topological Vicsek Model

Revisiting the classification

• Vicsek: metrical alignment

First order / coexistence The Second order / continuous

• Vicsek: topological alignment

Active Ising Model: hydrodynamic

Are all models of collective motion first order ?

Are all models of collective motion first order ?

No, fully connected alignment **⇔** continuous transition

 $\alpha \longrightarrow \alpha + \frac{\sigma \Gamma}{N}$ $\frac{\sigma\Gamma}{N}$ *g* $\left(\beta, \frac{\Gamma D}{v^2}\right)$ $\sum_{n=1}^{\infty}$ * no dependence on local density vanishes as the number of particles diverges \bullet Fluctuations renormalize T_c making it density dependent

Tc(*ρ*) turns a deceptive continuous transition into a first order scenario

 \bullet Fluctuations renormalize T_c making it density dependent

Tc(*ρ*) turns a deceptive continuous transition into a first order scenario

• Topological alignment gives no protection \longrightarrow onset of flocking remains discontinuous

Quantification of departure from equilibrium in AOUP

overdamped active particle: go to underdamped scenario

Effect of inertia on nonequilibrium signatures ?

 Quantification of departure from equilibrium in AOUP overdamped active particle: go to underdamped scenario Effect of inertia on nonequilibrium signatures ?

 Emergence of MIPS in polar liquid → What about MIPS in flocking bands ? Accessible in experiments ?

- Quantification of departure from equilibrium in AOUP overdamped active particle: go to underdamped scenario Effect of inertia on nonequilibrium signatures ?
- Emergence of MIPS in polar liquid → What about MIPS in flocking bands ? Accessible in experiments ?
- k -nearest neighbours alignment discontinuous \longrightarrow generic for other topological rules ? Necessary and sufficient condition for fluctuation-induced first-order flocking

- Quantification of departure from equilibrium in AOUP overdamped active particle: go to underdamped scenario Effect of inertia on nonequilibrium signatures ?
- Emergence of MIPS in polar liquid → What about MIPS in flocking bands ? Accessible in experiments ?
- k -nearest neighbours alignment discontinuous \longrightarrow generic for other topological rules ? Necessary and sufficient condition for fluctuation-induced first-order flocking

List of publications

D. Martin, J. O'byrne, ME. Cates, É. Fodor, C. Nardini, J. Tailleur, F. Van Wijland, Phys. Rev. E 103, 032607, (2021) D. Martin, T. Arnoulx de Pirey, JSTAT Mech. 4, 043205 (2021) D. Geyer, D. Martin, J. Tailleur, D. Bartolo, Phys. Rev. X 9, 031043, (2019) D. Martin, H. Chat´e, C. Nardini, A. Solon, J. Tailleur and F. Van Wijland, Phys. Rev. Lett. 126 148001 (2021)