
Nonequilibrium signatures and phase transitions in active
matter and beyond

PhD thesis of D. Martin supervised by J. Tailleur

Special thanks: C. Nardini

Collaborators: T. Arnoulx de Pirey, D. Bartolo, H. Chaté, D. Geyer, Y. Kafri, M. Kardar, C. Nardini,
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Microscopic Active Matter

� Particles exerting self-propulsion forces on their medium
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Physical mechanism

[Bricard et al, Nature 503 ]
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� Simplest theoretical models non-Gaussian correlated fluctuations
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Macroscopic Active Matter
� Active systems ubiquitous in nature

Biological

[Ballerini et al, PNAS 105, 2008] [Poujade et al, PNAS 104, 2007]

Healing tissueBird flocks

Synthetic

[Geyer et al, PRX 9, 2019] [Thutupalli et al, PNAS 115, 2018]

Lines of active dropletsColloidal flocks

� Self-organization emerges from collective dynamics active phase transitions

� Controlling active phases first step for engineering active materials

� Statisical physics: minimal ingredients

Motility-Induced Phase Separation (MIPS)
repulsive forces

Flocking transition
alignment
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Statistical physics of Active Matter: MIPS

� Phase separation at equilibrium: attractive forces vs thermal noise
Low T cohesion wins: liquid-gas coexistence

� Active particles: repulsion triggers phase-separation (MIPS) [Tailleur et al, PRL 2008]

[Van Der Linden et al. PRL 2019][Martin et al. PRE 2021]

What is the mechanism behind MIPS ?

active particle accumulate in slow regions Repulsion slows down particles

formation of dense clusters

� MIPS in self-propelled spheres: starts to be understood

� MIPS for generic interactions: more complex
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Statistical physics of Active Matter: flocking

� Modelling flocking transition aligning interactions

Ferromagnetic alignment minimal active model: Vicsek Model

� Point-like flying spins at speed v

θi= θ̄+η
η ∈ [−πT , πT ]

θ̄

r0

θ̄

� Phase diagram [Solon et al, PRL 114, 2015]

ρ0

T
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Statistical physics of Active Matter: flocking
� Vicsek Model relevant for experiments

[Bricard et al, Nature 503 ]

Quincke rollers

Pack them

� hydrodynamic + electrostatic interactions
[Bricard et al, Nature 503 ]

effective alignment

� Experimental phase diagram similar to the Vicsek Model

Disordered gas Polar bands Ordered flock

� Emergence of flocks in the Vicsek Model: starts to be understood

What lies beyond for more complex systems ?

D. Martin (Laboratoire MSC) 6 / 28
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The four axes of this thesis

Fluctuation-induced first-order flocking

Part III

Exact results for a single active particle

Part I

MIPS in dense polar flocks

Part II
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Microscopic Active Matter: exact approaches

� Simplest model Active Ornstein-Ulhenbeck Particles (AOUPs) [Fodor et al, PRL 117, 2016]

ẋ = −∂xφ+ v , τ v̇ = −v +
√

2D η with 〈v(t)v(t′)〉 = D

τ
e−|t−t

′|/τ

� τ ∼ 0 ⇔ Equilibrium, temperature D
Boltzmann distribution Ps(x) = e−

φ
D

No steady-state current J = 〈ẋ〉 = 0

� τ 6= 0 ⇔ out-of-equilibrium
deviation from Boltzmann Ps(x) = e−

φ
D + τ ..+ τ2..+ ..

Nonzero ratchet current J = τ2..+ ..

deviation from Boltzmann
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Microscopic Active matter: exact approaches

� Active Matter models neglects thermal fluctuations

interplay between active and passive noises rarely studied

� Minimal model: the AOUP with thermal noise

ẋ = −∂xφ+ v +
√

2T η1 , τ v̇ = −v +
√

2D η2

τ = 0 ⇔ Equilibrium at temperature T +D

� τ 6= 0: effect of T on nonequilibrium signatures ?
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Part II: Motility-induced solidification in roller flocks

Low density: Vicsek

High density: beyond Vicsek

New phase transition
active solidification

� What is happening ?
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Vicsek physics Beyond Vicsek

Is it MIPS at play in a flock ?
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Phenomenological hydrodynamics

� Standard hydrodynamic of the Vicsek model for ρ = 〈
∑
i

δ(r − ri)〉 and W = 〈
∑
i

viδ(r − ri)〉

∂tρ = Dρ∂xxρ− ∂xW (1)

∂tW + λW∂xW = DW∂xxW − ∂x (vρ) + αW − a4W
3 (2)

� Adapt it to high-density experimental features
� Rollers’ velocity drop: v → v(ρ)
� Rollers lose orientational order: α→ α(ρ)

Ordering drop Velocity drop

α

Postulated phenomenologically, could be rigorously derived
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Phenomenological hydrodynamics

� New phase transition at high density

Beyond Vicsek Physics
Vicsek transition

� MIPS-like transition: linear instability, lever rule, hysteresis loops, coarsening dynamics.

� Movie •
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Quincke rollers experiments

Gas Vicsek Bands Polar Liquid Solid Jam Active Solid

Beyond Vicsek Physics
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� Striking similarities of the phase diagram

Movie •
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Part II: conclusion

� New phase transition at high ρ in roller flocks active solidification

� Described by MIPS occurring in a polar liquid

� speed reduction dense flocks of active units active solidification

� Agreement of phenomenological hydrodynamics and experiments beyond the phase diagram
Lever rule
Hysteresis loops
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Part III: Fluctuation-induced phase separation in models of collective motion

� Emergence of collective motion: 1st or 2nd order ?
Practical importance: existence of a band phase

� Long standing debate
numerics: strong finite-size effects

analytics: mean-field approximations

Recipe: flocking models hydrodynamics linear stability order of the transition

� Vicsek: metric alignment � Vicsek: topological alignment

� Active Ising Model: hydrodynamics

First order / coexistence Second order / continuous

r0

[Grégoire et al, PRL 92, 2004] [Chou et al, PRE 86, 2012]

However, microscopic simulations disagree: why? Is it generic?
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The Active Ising Model [Solon et al, PRL 111, 2013]

� specific system but generic results

� a simplified spin model for collective motion

1 2 3 4 5
..

j
..

L

v
DD

a

W −
jW +

j

� Density ρj ' (n+
j + n−j )/a Magnetization mj ' (n+

j − n
−
j )/a

� Isotropic diffusion with rate D

� Active jumps with rate v : jumps left, jumps right.

� Spins align with rate W±j = exp
(
±βmjρj

)
⇔ fully connected Ising Model on site j

+Master equation Mean-field approximation

Hydrodynamics for ρ and m

D. Martin (Laboratoire MSC) 16 / 28
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The Active Ising Model [Solon et al, PRL 111, 2013]

∂tρ = Dρ∂xxρ− v∂xm
∂tm = Dm∂xxm− v∂xρ+ 2ρ sinh

(
β
m

ρ

)
− 2m cosh

(
β
m

ρ

)

� Landau expansion: 2ρ sinh
(
β
m

ρ

)
− 2m cosh

(
β
m

ρ

)
= αm− γ

m3

ρ2 +O(m5)

� Nonequilibrium model Landau terms FMF = αm− γm
3

ρ2 do not derive from a free energy

� Linear stability of homogeneous profiles
α = constant ordered solution linearly stable at onset

continuous emergence of flocking

At odds with microscopic simulations

� What did mean-field miss ? Fluctuations

renormalize the Landau terms in the dynamics of 〈ρ〉 and 〈m〉 F FMF + ∆F

D. Martin (Laboratoire MSC) 17 / 28
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Quasi-linear renormalization

� Fluctuations ρ = ρ0 + δρ and m = m0 + δm around homogeneous mean field

Landau terms F perturbed

∆F = ∂F
∂m
〈δm〉+ ∂F

∂ρ
〈δρ〉+ ∂2F

∂m∂ρ
〈δρδm〉+ 1

2
∂2F
∂2m
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∂2ρ
〈δρ2〉

Dynamics of δρ and δm at linear order ?
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(
δρq
δmq

)
=
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Mq

11 Mq
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Mq
21 Mq

22

)(
δρq
δmq

)
+
( 0√

2σρ0 ηq

)

steady-state correlators

〈δm〉 =0 〈δρ〉 = 0 〈δρδm〉 = 0 +O(m0)

〈δm2〉 =σρ0
v2
√

2α
D + α

√
v2 + αD

8αv2 + 4α2D
+O(m0) 〈δρ2〉 = σρ0
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v2+αD

)
4α (αD + 2v2) +O(m0)
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� Landau terms F F + ∆F
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α density dependent

� Linear stability analysis for α(ρ)
Homogeneous polar and disordered profiles unstable at onset

Discontinuous emergence of flocking

� Simulations of the stochastic PDE
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� Summary of the mechanism in Active Ising Model

MF hydrodynamics with deceptive continuous transition

+ fluctuations

Makes linear Landau term α density dependent

α(ρ)
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� Metric models: Fluctuation-induced first-order transition

discontinuous transition with coexistence

What about ’topological’ or ’metric-free’ models ?
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Voronoi neighbours
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� 2nd order arguments
numerics computationally costly, finite size effects

mean-field hydrodynamics may be misleading
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The topological Active Ising Model

� Previous full mean-field equation for active Ising

∂tm = D∇2m−∇(vρ) + 2ρΓ sinh
(
β
m

ρ

)
− 2mΓ cosh

(
β
m

ρ

)

microscopic flipping

W±j = exp(±βmjρj )
local aligning field

� Now makes it topological alignment with k-nearest neighbours

� Local interaction range y(x) adaptation to density fluctuations

� k =
∫ x+y(x)

x−y(x)
ρ(z)dz � m̃ =

∫ x+y(x)

x−y(x)

m(z)
k

dz

∂tm = D∇2m−∇(vρ) + 2ρΓsinh(βm̃)− 2mΓcosh(βm̃)

+
√

2σρ η

� Linear stability analysis continuous transition at mean field level

Protected against fluctuations ?

D. Martin (Laboratoire MSC) 22 / 28



The topological Active Ising Model

� Previous full mean-field equation for active Ising

∂tm = D∇2m−∇(vρ) + 2ρΓ sinh
(
β
m

ρ

)
− 2mΓ cosh

(
β
m

ρ

)
microscopic flipping

W±j = exp(±βmjρj )

local aligning field

� Now makes it topological alignment with k-nearest neighbours

� Local interaction range y(x) adaptation to density fluctuations

� k =
∫ x+y(x)

x−y(x)
ρ(z)dz � m̃ =

∫ x+y(x)

x−y(x)

m(z)
k

dz

∂tm = D∇2m−∇(vρ) + 2ρΓsinh(βm̃)− 2mΓcosh(βm̃)

+
√

2σρ η

� Linear stability analysis continuous transition at mean field level

Protected against fluctuations ?

D. Martin (Laboratoire MSC) 22 / 28



The topological Active Ising Model

� Previous full mean-field equation for active Ising

∂tm = D∇2m−∇(vρ) + 2ρΓ sinh
(
β
m

ρ

)
− 2mΓ cosh

(
β
m

ρ

)
microscopic flipping

W±j = exp(±βmjρj )
local aligning field

� Now makes it topological alignment with k-nearest neighbours

� Local interaction range y(x) adaptation to density fluctuations

� k =
∫ x+y(x)

x−y(x)
ρ(z)dz �

m(x)
ρ(x) → m̃(x) =

∫ x+y(x)

x−y(x)

m(z)
k

dz

∂tm = D∇2m−∇(vρ) + 2ρΓsinh(βm̃)− 2mΓcosh(βm̃)

+
√

2σρ η

� Linear stability analysis continuous transition at mean field level

Protected against fluctuations ?

D. Martin (Laboratoire MSC) 22 / 28



The topological Active Ising Model

� Previous full mean-field equation for active Ising

∂tm = D∇2m−∇(vρ) + 2ρΓ sinh
(
β
m

ρ

)
− 2mΓ cosh

(
β
m

ρ

)
microscopic flipping

W±j = exp(±βmjρj )
local aligning field

� Now makes it topological alignment with k-nearest neighbours

� Local interaction range y(x) adaptation to density fluctuations

� k =
∫ x+y(x)

x−y(x)
ρ(z)dz �

m(x)
ρ(x) → m̃(x) =

∫ x+y(x)

x−y(x)

m(z)
k

dz

∂tm = D∇2m−∇(vρ) + 2ρΓsinh(βm̃)− 2mΓcosh(βm̃)

+
√

2σρ η

� Linear stability analysis continuous transition at mean field level

Protected against fluctuations ?

D. Martin (Laboratoire MSC) 22 / 28



The topological Active Ising Model

� Previous full mean-field equation for active Ising

∂tm = D∇2m−∇(vρ) + 2ρΓ sinh
(
β
m

ρ

)
− 2mΓ cosh

(
β
m

ρ

)
microscopic flipping

W±j = exp(±βmjρj )
local aligning field

� Now makes it topological alignment with k-nearest neighbours

� Local interaction range y(x) adaptation to density fluctuations

� k =
∫ x+y(x)

x−y(x)
ρ(z)dz �

m(x)
ρ(x) → m̃(x) =

∫ x+y(x)

x−y(x)

m(z)
k

dz

∂tm = D∇2m−∇(vρ) + 2ρΓsinh(βm̃)− 2mΓcosh(βm̃)

+
√

2σρ η

� Linear stability analysis continuous transition at mean field level

Protected against fluctuations ?

D. Martin (Laboratoire MSC) 22 / 28



The topological Active Ising Model

� Previous full mean-field equation for active Ising

∂tm = D∇2m−∇(vρ) + 2ρΓ sinh
(
β
m

ρ

)
− 2mΓ cosh

(
β
m

ρ

)
microscopic flipping

W±j = exp(±βmjρj )
local aligning field

� Now makes it topological alignment with k-nearest neighbours

� Local interaction range y(x) adaptation to density fluctuations

� k =
∫ x+y(x)

x−y(x)
ρ(z)dz

�

m(x)
ρ(x) → m̃(x) =

∫ x+y(x)

x−y(x)

m(z)
k

dz

∂tm = D∇2m−∇(vρ) + 2ρΓsinh(βm̃)− 2mΓcosh(βm̃)

+
√

2σρ η

� Linear stability analysis continuous transition at mean field level

Protected against fluctuations ?

D. Martin (Laboratoire MSC) 22 / 28



The topological Active Ising Model

� Previous full mean-field equation for active Ising

∂tm = D∇2m−∇(vρ) + 2ρΓ sinh
(
β
m

ρ

)
− 2mΓ cosh

(
β
m

ρ

)
microscopic flipping

W±j = exp(±βmjρj )
local aligning field

� Now makes it topological alignment with k-nearest neighbours

� Local interaction range y(x) adaptation to density fluctuations

� k =
∫ x+y(x)

x−y(x)
ρ(z)dz �

m(x)
ρ(x) → m̃(x) =

∫ x+y(x)

x−y(x)

m(z)
k

dz

∂tm = D∇2m−∇(vρ) + 2ρΓsinh(βm̃)− 2mΓcosh(βm̃)

+
√

2σρ η

� Linear stability analysis continuous transition at mean field level

Protected against fluctuations ?

D. Martin (Laboratoire MSC) 22 / 28



The topological Active Ising Model

� Previous full mean-field equation for active Ising

∂tm = D∇2m−∇(vρ) + 2ρΓ sinh
(
β
m

ρ

)
− 2mΓ cosh

(
β
m

ρ

)
microscopic flipping

W±j = exp(±βmjρj )
local aligning field

� Now makes it topological alignment with k-nearest neighbours

� Local interaction range y(x) adaptation to density fluctuations

� k =
∫ x+y(x)

x−y(x)
ρ(z)dz �

m(x)
ρ(x) → m̃(x) =

∫ x+y(x)

x−y(x)

m(z)
k

dz

∂tm = D∇2m−∇(vρ) + 2ρΓsinh(βm̃)− 2mΓcosh(βm̃)

+
√

2σρ η

� Linear stability analysis continuous transition at mean field level

Protected against fluctuations ?

D. Martin (Laboratoire MSC) 22 / 28



The topological Active Ising Model

� Previous full mean-field equation for active Ising

∂tm = D∇2m−∇(vρ) + 2ρΓ sinh
(
β
m

ρ

)
− 2mΓ cosh

(
β
m

ρ

)
microscopic flipping

W±j = exp(±βmjρj )
local aligning field

� Now makes it topological alignment with k-nearest neighbours

� Local interaction range y(x) adaptation to density fluctuations

� k =
∫ x+y(x)

x−y(x)
ρ(z)dz �

m(x)
ρ(x) → m̃(x) =

∫ x+y(x)

x−y(x)

m(z)
k

dz

∂tm = D∇2m−∇(vρ) + 2ρΓsinh(βm̃)− 2mΓcosh(βm̃)

+
√

2σρ η

� Linear stability analysis continuous transition at mean field level

Protected against fluctuations ?

D. Martin (Laboratoire MSC) 22 / 28



The topological Active Ising Model

� Previous full mean-field equation for active Ising

∂tm = D∇2m−∇(vρ) + 2ρΓ sinh
(
β
m

ρ

)
− 2mΓ cosh

(
β
m

ρ

)
microscopic flipping

W±j = exp(±βmjρj )
local aligning field

� Now makes it topological alignment with k-nearest neighbours

� Local interaction range y(x) adaptation to density fluctuations

� k =
∫ x+y(x)

x−y(x)
ρ(z)dz �

m(x)
ρ(x) → m̃(x) =

∫ x+y(x)

x−y(x)

m(z)
k

dz

∂tm = D∇2m−∇(vρ) + 2ρΓsinh(βm̃)− 2mΓcosh(βm̃)

+
√

2σρ η

� Linear stability analysis continuous transition at mean field level

Protected against fluctuations ?

D. Martin (Laboratoire MSC) 22 / 28



The topological Active Ising Model

� Previous full mean-field equation for active Ising

∂tm = D∇2m−∇(vρ) + 2ρΓ sinh
(
β
m

ρ

)
− 2mΓ cosh

(
β
m

ρ

)
microscopic flipping

W±j = exp(±βmjρj )
local aligning field

� Now makes it topological alignment with k-nearest neighbours

� Local interaction range y(x) adaptation to density fluctuations

� k =
∫ x+y(x)

x−y(x)
ρ(z)dz �

m(x)
ρ(x) → m̃(x) =

∫ x+y(x)

x−y(x)

m(z)
k

dz

∂tm = D∇2m−∇(vρ) + 2ρΓsinh(βm̃)− 2mΓcosh(βm̃)+
√

2σρ η

� Linear stability analysis continuous transition at mean field level

Protected against fluctuations ?

D. Martin (Laboratoire MSC) 22 / 28



The fluctuating topological hydrodynamics

� Renormalization of linear Landau term

α α+ σΓ
k

g

(
β,

Γk
vρ
,

ΓD
v2

)
α density dependent

� Linear stability discontinuous emergence of flocking

� Simulations of the topological stochastic PDE
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� So far predictions for field-theoretic models

Let’s try to see if it is robust for microscopic models !
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The microscopic topological dynamics

� Microscopic dynamics of the topological Active Ising Model

Off-lattice Langevin particles

Each particles carries a spin
ṙj = sjv ux +

√
2D ηj

uy

ux

W−j

W+
j

Flipping rates W±j = Γ exp(±βm̃j) with m̃j = averaged magnetization of k-nearest neighbours
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The microscopic topological dynamics

� Results of the microscopic topological Active Ising Model
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Same fate for microscopic topological models

� Is it model-dependent ? Only for active spins ?

Holds also for topological Vicsek Model
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Revisiting the classification

� Vicsek: metrical alignment � Vicsek: topological alignment

� Active Ising Model: numerics

� Active Ising Model: hydrodynamic

� Fully connected models

First order / coexistence Second order / continuous

� Are all models of collective motion first order ?

No, fully connected alignment ⇔ continuous transition

α α+ σΓ
N

g

(
β,

ΓD
v2

)
no dependence on local density

vanishes as the number of particles diverges
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Part III: conclusion

� Fluctuations renormalize Tc making it density dependent

� Tc(ρ) turns a deceptive continuous transition into a first order scenario

� Topological alignment gives no protection onset of flocking remains discontinuous

D. Martin (Laboratoire MSC) 27 / 28



Part III: conclusion

� Fluctuations renormalize Tc making it density dependent

� Tc(ρ) turns a deceptive continuous transition into a first order scenario

� Topological alignment gives no protection onset of flocking remains discontinuous

D. Martin (Laboratoire MSC) 27 / 28



Summary and outlook

� Quantification of departure from equilibrium in AOUP
overdamped active particle: go to underdamped scenario

Effect of inertia on nonequilibrium signatures ?

� Emergence of MIPS in polar liquid
What about MIPS in flocking bands ? Accessible in experiments ?

� k-nearest neighbours alignment discontinuous generic for other topological rules ?
Necessary and sufficient condition for fluctuation-induced first-order flocking

� List of publications
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