D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS 7

Solidification theory model phenomenology

Experimental solidification phase diagram transition

Conclusion

Motility-induced solidification in roller flocks

D. Martin

Laboratoire MSC université Paris Diderot PARIS DIDEROT

June 29, 2020

D. Martin

Introduction

- Vicsek model
- presentation phenomenology theory and experiments
- Quincke rollers
- mechanism experiment
- Solidification
- MIPS 1
- Solidification theory model phenomenology
- Experimental solidification phase diagran transition
- Conclusion

Active matter : an out-of-equilibrium field

• Properties of assemblies of micro-agents dissipating energy in their medium

D. Martin

Introduction

- Vicsek model
- presentation phenomenology theory and experiments
- Quincke roller mechanism
- Solidification
- MIPS
- Solidification theory model phenomenology
- Experimental solidification phase diagram transition
- Conclusion

Active matter : an out-of-equilibrium field

- Properties of assemblies of micro-agents dissipating energy in their medium
- Canonical examples in nature : bacterial colonies, fish schools, cellular tissues...

A swarm of fish

E. Coli bacteria

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS 1

Solidification theory model phenomenology

Experimental solidification phase diagran transition

Conclusion

Summary of the talk

• The Vicsek model and its experimental realizations

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS

Solidification theory model phenomenology

Experimental solidification phase diagram transition

Conclusion

Summary of the talk

• The Vicsek model and its experimental realizations

Focus on Quincke rollers in a racetrack

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS

Solidification theory model phenomenolo

Experimental solidification phase diagram transition

Conclusion

Summary of the talk

• The Vicsek model and its experimental realizations

Focus on Quincke rollers in a racetrack

Motility Induced Phase Separation (MIPS)

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke roller:

experiment

Solidification

MIPS

Solidification theory model phenomenolo

Experimental solidification phase diagram transition

Conclusion

Summary of the talk

• The Vicsek model and its experimental realizations

Focus on Quincke rollers in a racetrack

Motility Induced Phase Separation (MIPS)

Motility Induced solidification in roller flocks

D. Martin

Introduction

Vicsek model

- presentation phenomenology
- theory and experiments
- Quincke rollers
- mechanism
- experiment
- Solidification
- MIPS
- Solidification theory model phenomenology
- Experimental solidification phase diagram transition
- Conclusion

- The Vicsek model : a canonical model
 - agents moving at constant speed in a given direction
 - noisy aligning interactions between agents

D. Martin

Introduction

Vicsek model

- presentation phenomenology
- theory and experiments
- Quincke rollers
- mechanism
- experiment
- Solidification
- MIPS
- Solidification theory model phenomenology
- Experimental solidification phase diagram transition
- Conclusion

- The Vicsek model : a canonical model
 - agents moving at constant speed in a given direction
 - noisy aligning interactions between agents

D. Martin

Introduction

Vicsek model

- presentation phenomenology
- theory and experiments
- Quincke rollers
- mechanism
- experiment
- Solidification
- MIPS
- Solidification theory model phenomenology
- Experimental solidification phase diagram transition
- Conclusion

- The Vicsek model : a canonical model
 - agents moving at constant speed in a given direction
 - noisy aligning interactions between agents

D. Martin

Introduction

Vicsek model

- presentation phenomenology
- theory and experiments
- Quincke rollers
- mechanism
- experiment
- Solidification
- MIPS
- Solidification theory model phenomenology
- Experimental solidification phase diagram transition
- Conclusion

- The Vicsek model : a canonical model
 - agents moving at constant speed in a given direction
 - noisy aligning interactions between agents

D. Martin

Introduction

Vicsek model

- presentation phenomenology
- theory and experiments
- Quincke rollers
- mechanism
- experiment
- Solidification
- MIPS
- Solidification theory model phenomenology
- Experimental solidification phase diagram transition
- Conclusion

- The Vicsek model : a canonical model
 - agents moving at constant speed in a given direction
 - noisy aligning interactions between agents

D. Martin

Introduction

Vicsek model

- presentation phenomenology
- theory and experiments
- Quincke rollers
- mechanism
- experiment
- Solidification
- MIPS
- Solidification theory model phenomenology
- Experimental solidification phase diagram transition
- Conclusion

- The Vicsek model : a canonical model
 - agents moving at constant speed in a given direction
 - noisy aligning interactions between agents

D. Martin

Introduction

Vicsek model

presentation

phenomenology

theory and experiment

Quincke rollers

mechanism experiment

Solidification

MIPS 7

Solidification theory model phenomenology

Experimental solidification phase diagram transition

Conclusion

Vicsek phenomenology

• A first order phase transition

D. Martin

Introduction

Vicsek model

presentation

phenomenology

theory and experiment

Quincke roller

mechanism experiment

Solidification

MIPS 7

Solidification theory model phenomenology

Experimental solidification phase diagram transition

Conclusion

Vicsek phenomenology

- A first order phase transition
- The liquid fraction \nearrow linearly with ρ .

D. Martin

Introduction

Vicsek model

presentation

phenomenology

theory and experiment

Quincke rollers

mechanism experiment

Solidification

MIPS 7

Solidification theory model phenomenology

Experimental solidification phase diagram transition

Conclusion

Vicsek phenomenology

- A first order phase transition
- The liquid fraction \nearrow linearly with ho .
- Hysteresis loop

D. Martin

Introduction

Vicsek model

presentation

phenomenology

theory and experiments

Quincke rollers

mechanism

experiment

Solidification

MIPS

Solidification theory model phenomenology

Experimental solidification phase diagran transition

Conclusion

Vicsek phenomenology

D. Martin

Introduction

Vicsek model

presentation phenomenolog

theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS 1

Solidification theory model phenomenology

Experimental solidification phase diagran transition

Conclusion

Toner-Tu theory for Vicsek model

• state of the art : coarse-grained theories

D. Martin

Introduction

- Vicsek model
- presentation phenomenology
- theory and experiments
- Quincke rollers
- mechanism experiment
- Solidification
- MIPS
- Solidification theory model phenomenolo
- Experimental solidification phase diagram transition
- Conclusion

Toner-Tu theory for Vicsek model

• state of the art : coarse-grained theories

1

 A minimalist 1D Toner-Tu hydrodynamic model for active gas and polar bands coexistence in the literature. [Caussin, Solon, ..., PRL, 2014]

$$\partial_t \rho = D_\rho \partial_{xx} \rho - \partial_x W$$
 (1)

$$\partial_t W + \lambda W \partial_x W = D_W \partial_{xx} W - \partial_x (v\rho) + a_2 W - a_4 W^3 \qquad (2)$$

D. Martin

Introduction

- Vicsek model
- presentation phenomenology
- theory and experiments
- Quincke rollers
- mechanism experiment
- Solidification
- MIPS
- Solidification theory model phenomenolo
- Experimental solidification phase diagram transition
- Conclusion

Toner-Tu theory for Vicsek model

• state of the art : coarse-grained theories

1

 A minimalist 1D Toner-Tu hydrodynamic model for active gas and polar bands coexistence in the literature. [Caussin, Solon, ..., PRL, 2014]

$$\partial_t \rho = D_\rho \partial_{\mathsf{x}\mathsf{x}} \rho - \partial_{\mathsf{x}} W \tag{1}$$

$$\partial_t W + \lambda W \partial_x W = D_W \partial_{xx} W - \partial_x \left(v \rho \right) + a_2 W - a_4 W^3 \qquad (2)$$

D. Martin

Introduction

- Vicsek model
- presentation phenomenology
- theory and experiments
- Quincke rollers
- mechanism experiment
- Solidification
- MIPS
- Solidification theory model phenomenolo
- Experimental solidification phase diagram transition
- Conclusion

Toner-Tu theory for Vicsek model

- state of the art : coarse-grained theories
- A minimalist 1D Toner-Tu hydrodynamic model for active gas and polar bands coexistence in the literature. [Caussin, Solon, ..., PRL, 2014]

$$\partial_t \rho = D_\rho \partial_{xx} \rho - \partial_x W \tag{1}$$

$$\partial_{t}W + \lambda W \partial_{x}W = D_{W}\partial_{xx}W - \partial_{x}(v\rho) + a_{2}W - a_{4}W^{3}$$
(2)

- Reproduces Vicsek phenomenology
 - Polar bands propagating in a disordered background
 - First order transition : constant binodals, lever rule, hysteresis loop...

D. Martin

Introduction

Vicsek model presentation phenomenology

theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS

Solidification theory model phenomenology

Experimental solidification phase diagran transition

Conclusion

Vicsek phenomenology in experiments

• Shaked grains [Deseigne, Dauchot, Chaté ,PRL, 2010]

D. Martin

Introduction

Vicsek model

presentation phenomenology

theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS

Solidification theory model phenomenology

Experimental solidification phase diagram transition

Conclusion

Vicsek phenomenology in experiments

• Assemblies of Quincke rollers [Bricard, Caussin, ..., Nature, 2013]

• We will now focus on this experimental realization of Vicsek model

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism

Solidification

MIPS

Solidification theory model phenomenology

Experimental solidification phase diagran transition

Conclusion

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS 1

Solidification theory model phenomenology

Experimental solidification phase diagram transition

Conclusion

Physics of Quincke rollers

• A roller immersed in a conductive fluid submitted to E_0 develops an electrostatic dipole

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS

Solidification theory model phenomenolo

Experimental solidification phase diagram transition

Conclusion

- A roller immersed in a conductive fluid submitted to E_0 develops an electrostatic dipole
- Can it sustain steady state rotation ?

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS

- Solidification theory model phenomenolo
- Experimental solidification phase diagram transition

Conclusion

- A roller immersed in a conductive fluid submitted to E_0 develops an electrostatic dipole
- Can it sustain steady state rotation ?
- Yes, if on the surface \vec{j}_a compensated by \vec{j}_c
 - \vec{j}_c conductive current generated by \vec{p} and E_0
 - \vec{j}_a advective current due to rotation

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS

- Solidification theory model phenomenolo
- Experimental solidification phase diagram transition

Conclusion

Physics of Quincke rollers

- A roller immersed in a conductive fluid submitted to E_0 develops an electrostatic dipole
- Can it sustain steady state rotation ?
- Yes, if on the surface \vec{j}_a compensated by \vec{j}_c
 - \vec{j}_c conductive current generated by \vec{p} and E_0
 - \vec{j}_a advective current due to rotation

• It happens above a threshold field E_Q : $\Omega = rac{1}{ au} \sqrt{\left(rac{E_0}{E_Q}
ight)^2 - 1}$

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism

experiment

Solidification

MIPS

Solidification theory model phenomenology

Experimental solidification phase diagran transition

Conclusion

Physics of Quincke rollers

• Rollers experience hydrodynamic and electrostatic interactions

D. Martin

Introduction

Vicsek model

- presentation phenomenology theory and experiments
- Quincke rollers
- experiment
- Solidification
- MIPS
- Solidification theory model phenomenology
- Experimental solidification phase diagram transition
- Conclusion

- Rollers experience hydrodynamic and electrostatic interactions
- Alignment is due to :
 - long range electrostatic dipole-dipole interactions
 - short range hydrodynamic interactions

D. Martin

Introduction

Vicsek model

- presentation phenomenology theory and experiments
- Quincke rollers
- experiment
- Solidification
- MIPS 7
- Solidification theory model phenomenolog
- Experimental solidification phase diagram transition
- Conclusion

- Rollers experience hydrodynamic and electrostatic interactions
- Alignment is due to :
 - long range electrostatic dipole-dipole interactions
 - short range hydrodynamic interactions
- Some orders of magnitude :
 - radius $a = 5\mu m$ velocity $v = 1mm.s^{-1}$ rotation $\Omega = 1kHz$
 - width l = 2mm
- length L = 1cm
- rotation $\Omega = 1 k H z$ height $H = 200 \mu m$

D. Martin

Introduction

Vicsek model

- presentation phenomenology theory and experiments
- Quincke rollers
- experiment
- Solidification
- MIPS ?
- Solidification theory model phenomenolog
- Experimental solidification phase diagram transition
- Conclusion

- Rollers experience hydrodynamic and electrostatic interactions
- Alignment is due to :
 - long range electrostatic dipole-dipole interactions
 - short range hydrodynamic interactions
- Some orders of magnitude :
 - radius $a = 5 \mu m$ velocity $v = 1 m m. s^{-1}$ rotation $\Omega = 1 k H z$
 - width l = 2mm
- length L = 1 cm
- height $H = 200 \mu m$
- Dilute coarse-grained evolution quantitatively described by Toner-Tu [Geyer, Morin, Bartolo, Nature Materials, 2018]

D. Martin

Introduction

Vicsek model

- presentation phenomenology theory and experiments
- Quincke rollers
- experiment
- Solidification
- MIPS ?
- Solidification theory model phenomenolog
- Experimental solidification phase diagram transition
- Conclusion

- Rollers experience hydrodynamic and electrostatic interactions
- Alignment is due to :
 - long range electrostatic dipole-dipole interactions
 - short range hydrodynamic interactions
- Some orders of magnitude :
 - radius $a = 5 \mu m$ velocity $v = 1 mm.s^{-1}$ rotation $\Omega = 1 kHz$
 - width l = 2mm le
- length L = 1cm
- height $H = 200 \mu m$
- Dilute coarse-grained evolution quantitatively described by Toner-Tu [Geyer, Morin, Bartolo, Nature Materials, 2018]
- However, missing features at high density

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS 1

Solidification theory model phenomenology

Experimental solidification phase diagran transition

Conclusion

Beyond Vicsek phenomenology at high density

- Unveiling new phase transition at high ρ for assemblies of Quincke rollers.

D. Martin

Introduction

Vicsek model

- presentation phenomenology theory and experiments
- Quincke rollers
- mechanism experiment

Solidification

- MIPS 1
- Solidification theory model phenomenology
- Experimental solidification phase diagram transition
- Conclusion

Beyond Vicsek phenomenology at high density

- Unveiling new phase transition at high ρ for assemblies of Quincke rollers.
- Coexistence of polar liquid and counter-propagating traffic jams

D. Martin

Introduction

Vicsek model

- presentation phenomenology theory and experiments
- Quincke rollers
- mechanism experiment

Solidification

MIPS 1

- Solidification theory model phenomenolo
- Experimental solidification phase diagram transition

Conclusion

Beyond Vicsek phenomenology at high density

- Unveiling new phase transition at high ρ for assemblies of Quincke rollers.
- Coexistence of polar liquid and counter-propagating traffic jams

• We call it active solidification

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS 1

Solidification theory model phenomenology

Experimental solidification phase diagran transition

Conclusion

Beyond Vicsek phenomenology at high density

• What is happening ?

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism experiment

Solidification

- MIPS 1
- Solidification theory model phenomenology
- Experimental solidification phase diagran transition
- Conclusion

Beyond Vicsek phenomenology at high density

• What is happening ?

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS 1

Solidification theory model phenomenology

Experimental solidification phase diagram transition

Conclusion

Beyond Vicsek phenomenology at high density

• What is happening ?

• Drop of velocity and polar order as ho
earrow

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism

experiment

Solidification

MIPS ?

Solidification theory model phenomenology

Experimental solidification phase diagran transition

Conclusion

Beyond Vicsek phenomenology : MIPS ?

• $v(\rho) \searrow$ when $\rho \nearrow$: MIPS ingredient

D. Martin

Introduction

Vicsek model

- presentation phenomenology theory and experiments
- Quincke rollers
- mechanism experiment
- Solidification
- MIPS ?
- Solidification theory model phenomenolo
- Experimental solidification phase diagram transition
- Conclusion

Beyond Vicsek phenomenology : MIPS ?

- $v(\rho) \searrow$ when $\rho \nearrow$: MIPS ingredient
- Self-propelled particles with pairwise forces (PFAPs) [Fily & Marchetti PRL 2012, Redner et al. PRL 2013, Stenhammar et al. PRL 2013, Bialké et al. PRL 2013, ...]

$$\dot{\mathbf{r}}_{\mathbf{i}} = \mathbf{v}\mathbf{u}(\theta_i) + \mu \sum_{j} F_{ij}(\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}) + \sqrt{2D_t}\eta_i; \qquad \dot{\theta}_i = \sqrt{2D_r}\xi_i$$

D. Martin

Introduction

Vicsek model

- presentation phenomenology theory and experiments
- Quincke rollers
- mechanism
- Solidification
- MIPS ?
- Solidification theory model phenomenolo
- Experimental solidification phase diagram transition
- Conclusion

Beyond Vicsek phenomenology : MIPS ?

- $v(\rho) \searrow$ when $\rho \nearrow$: MIPS ingredient
- Self-propelled particles with pairwise forces (PFAPs)
 [Filv & Marchetti PRI 2012 Redner et al. PRI 2013 Stephann
 - [Fily & Marchetti PRL 2012, Redner et al. PRL 2013, Stenhammar et al. PRL 2013, Bialké et al. PRL 2013, ...]

$$\dot{\mathbf{r}}_{\mathbf{i}} = \mathbf{v}\mathbf{u}(\theta_i) + \mu \sum_{j} F_{ij}(\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}) + \sqrt{2D_t}\eta_i; \qquad \dot{\theta}_i = \sqrt{2D_r}\xi_i$$

• Interactions yields decreasing $v(\rho) \equiv \sum_{i} \vec{r}_{i} \cdot \vec{u}(\theta_{i})$ [Fily et al PRL (2012)]

D. Martin

Introduction

Vicsek model

- presentation phenomenology theory and experiments
- Quincke roller mechanism experiment
- Solidification
- MIPS ?
- Solidification theory model phenomenology
- Experimental solidification phase diagram transition
- Conclusion

MIPS scenario

- Non-uniform speed $\longrightarrow \partial_t P = -\nabla(v(\mathbf{r})\mathbf{u}(\theta)P) + \Theta P$ Accumulation in slow regions $\rho \sim \frac{1}{v(\mathbf{r})}$
- $\nu'(\rho) < 0 \longrightarrow$ Slow down in dense regions

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

- Quincke rolle mechanism experiment
- Solidification

MIPS ?

- Solidification theory model phenomenology
- Experimental solidification phase diagram transition

Conclusion

MIPS scenario

• Non-uniform speed $\rightarrow \partial_t P = -\nabla(v(\mathbf{r})\mathbf{u}(\theta)P) + \Theta P$

Accumulation in slow regions $\rho \sim \frac{1}{v(\mathbf{r})}$

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

- Quincke roller mechanism experiment
- Solidification
- MIPS ?
- Solidification theory model phenomenology
- Experimental solidification phase diagram transition
- Conclusion

MIPS scenario

• Non-uniform speed $\longrightarrow \partial_t P = -\nabla(v(\mathbf{r})\mathbf{u}(\theta)P) + \Theta P$

Accumulation in slow regions $\rho \sim \frac{1}{v(\mathbf{r})}$

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

- Quincke roller mechanism experiment
- Solidification
- MIPS ?

Solidification theory model phenomenolo

Experimental solidification phase diagram transition

Conclusion

MIPS scenario

• Non-uniform speed $\rightarrow \partial_t P = -\nabla(v(\mathbf{r})\mathbf{u}(\theta)P) + \Theta P$

Accumulation in slow regions $\rho \sim \frac{1}{v(\mathbf{r})}$

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

- Quincke roller mechanism experiment
- Solidification
- MIPS ?
- Solidification theory model phenomenolo
- Experimental solidification phase diagram transition
- Conclusion

MIPS scenario

• Non-uniform speed $\rightarrow \partial_t P = -\nabla(v(\mathbf{r})\mathbf{u}(\theta)P) + \Theta P$

Accumulation in slow regions $\rho \sim \frac{1}{v(\mathbf{r})}$

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

- Quincke roller mechanism experiment
- Solidification
- MIPS ?
- Solidification theory model phenomenolo
- Experimental solidification phase diagram transition

Conclusion

MIPS scenario

• Non-uniform speed $\rightarrow \partial_t P = -\nabla(v(\mathbf{r})\mathbf{u}(\theta)P) + \Theta P$

Accumulation in slow regions $\rho \sim \frac{1}{v(\mathbf{r})}$

• $v'(\rho) < 0 \longrightarrow$ Slow down in dense regions

$$\rho_{0} + \delta\rho \longrightarrow \frac{1}{\nu(\rho_{0}) + \nu'(\rho_{0})\delta\rho} \simeq \rho_{0} - \rho_{0}\frac{\nu'}{\nu}\delta\rho$$

$$\nu(\rho_{0}) + \nu'(\rho_{0})\delta\rho \longrightarrow \chi$$

• Linear instab. if $\rho_0 v' + v \leq 0$

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

- Quincke roller mechanism experiment
- Solidification
- MIPS ?

Solidification theory model phenomenolo

Experimental solidification phase diagram transition

Conclusion

MIPS scenario

• Non-uniform speed $\rightarrow \partial_t P = -\nabla(v(\mathbf{r})\mathbf{u}(\theta)P) + \Theta P$

Accumulation in slow regions $\rho \sim \frac{1}{v(\mathbf{r})}$

• $v'(\rho) < 0 \longrightarrow$ Slow down in dense regions

$$\rho_{0} + \delta\rho \longrightarrow \frac{1}{\nu(\rho_{0}) + \nu'(\rho_{0})\delta\rho} \simeq \rho_{0} - \rho_{0}\frac{\nu'}{\nu}\delta\rho$$

$$\nu(\rho_{0}) + \nu'(\rho_{0})\delta\rho \longrightarrow \chi$$

• Linear instab. if $\rho_0 v' + v \leq 0$

D. Martin

Introduction

Vicsek model

- presentation phenomenology theory and experiments
- Quincke roller mechanism experiment
- Solidification
- MIPS ?
- Solidification theory model phenomenolo
- Experimental solidification phase diagram transition

V

Conclusion

MIPS scenario

• Non-uniform speed $\longrightarrow \partial_t P = -\nabla(v(\mathbf{r})\mathbf{u}(\theta)P) + \Theta P$

Accumulation in slow regions $\rho \sim \frac{1}{v(\mathbf{r})}$

$$\rho_{0} + \delta\rho \longrightarrow \frac{1}{\nu(\rho_{0}) + \nu'(\rho_{0})\delta\rho} \simeq \rho_{0} - \rho_{0} \frac{\nu'}{\nu} \delta\rho$$

$$(\rho_{0}) + \nu'(\rho_{0})\delta\rho \longrightarrow \chi$$

- Linear instab. if $\rho_0 v' + v \leq 0$
- What does it entail ?

 Motility Induced Phase Separation

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism

experiment

Solidification

MIPS

Solidificatior theory

model

phenomenology

Experimental solidification phase diagran transition

Conclusion

Including MIPS in Toner-Tu hydrodynamics

• Take again the Toner-Tu hydrodynamic for Vicsek

$$\partial_t \rho = D_\rho \partial_{xx} \rho - \partial_x W \tag{3}$$

$$\partial_t W + \lambda W \partial_x W = D_W \partial_{xx} W - \partial_x (v\rho) + a_2 W - a_4 W^3 \qquad (4)$$

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS

Solidification theory

model

phenomenology

```
Experimental
solidification
phase diagram
transition
```

Conclusion

Including MIPS in Toner-Tu hydrodynamics

• Take again the Toner-Tu hydrodynamic for Vicsek

$$\partial_t \rho = D_\rho \partial_{xx} \rho - \partial_x W \tag{3}$$

$$\partial_t W + \lambda W \partial_x W = D_W \partial_{xx} W - \partial_x (v\rho) + a_2 W - a_4 W^3 \qquad (4)$$

- Adapt it to two high-density experimental features :
 - Rollers' velocity drop at high density : $v \rightarrow v(\rho)$
 - Rollers lose orientational order at high density : $a_2 \rightarrow a_2(
 ho)$

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS 1

Solidificatior theory

model

phenomenology

Experimental solidification phase diagram transition

Conclusion

Including MIPS in Toner-Tu hydrodynamics

• Take again the Toner-Tu hydrodynamic for Vicsek

ć

$$\partial_t \rho = D_\rho \partial_{xx} \rho - \partial_x W$$
 (3)

$$\partial_t W + \lambda W \partial_x W = D_W \partial_{xx} W - \partial_x (v\rho) + a_2 W - a_4 W^3 \qquad (4)$$

- Adapt it to two high-density experimental features :
 - Rollers' velocity drop at high density : $v \rightarrow v(\rho)$
 - Rollers lose orientational order at high density : $a_2 \rightarrow a_2(\rho)$

Velocity drop

Ordering drop

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke roller

mechanism experiment

Solidification

MIPS

Solidification theory model phenomenology

Experimental solidification phase diagram transition

Conclusion

Modified Toner-Tu hydrodynamics

• New phase transition

Beyond Vicsek Physics

Phase diagram of modified Toner-Tu

- Linear stability exhibits two MIPS-like criteria
 - solid melting : $v(\rho) + \rho v'(\rho) < -K_1 D_{\rho}$
 - solid nucleation : $v(
 ho) +
 ho v'(
 ho) < -K_2 W_0^2$

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS

Solidification theory model phenomenology

Experimental solidification phase diagram transition

Conclusion

Modified Toner-Tu transition is first order

• Finite lower bound for traffic jam extent and lever rule

D. Martin

Introduction

Vicsek model

- presentation phenomenology theory and experiments
- Quincke rollers
- mechanism experiment
- Solidification
- MIPS
- Solidification theory model phenomenology
- Experimental solidification phase diagram transition
- Conclusion

Modified Toner-Tu transition is first order

- Finite lower bound for traffic jam extent and lever rule
- Constants binodals at coexistence

solidification in Modified Toner-Tu transition is first order

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

- Quincke rollers
- mechanism
- Solidification

MIPS

- Solidification theory model phenomenology
- Experimental solidification phase diagram transition

Conclusion

- Finite lower bound for traffic jam extent and lever rule
- Constants binodals at coexistence
- Slow coarsening dynamic leading to complete phase separation

Modified Toner-Tu transition is first order

D. Martin

phenomenology

phase diagram

- Finite lower bound for traffic jam extent and lever rule
- Constants binodals at coexistence
- Slow coarsening dynamic leading to complete phase separation
- Existence of a metastable region

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

- mechanism
- experiment
- Solidification
- MIPS 7
- Solidification theory model

phenomenology

- Experimental solidification phase diagram transition
- Conclusion

Toner-Tu hydrodynamic simulation

• Back to experiments \rightarrow same phenomenology ?

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS ?

Solidification theory model phenomenology

Experimental solidification

phase diagram transition

Conclusion

Phase diagram of Quincke rollers

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS 7

Solidification theory model phenomenology

Experimental solidification phase diagram

transition

Conclusion

Phase diagram of Quincke rollers

• Same phase diagram

D. Martin

Introduction

Vicsek model

presentation phenomenology theory and experiments

Quincke rollers

mechanism

experiment

Solidification

MIPS

Solidification theory model phenomenology

Experimental solidification phase diagran transition

Conclusion

D. Martin

Introduction

Vicsek model

- presentation phenomenology theory and experiments
- Quincke rollers
- mechanism
- experiment
- Solidification
- MIPS
- Solidification theory model phenomenology
- Experimental solidification phase diagram transition
- Conclusion

Active solidification is a first order transition

• Finite lower bound for traffic jam extent and lever rule

D. Martin

Introduction

- Vicsek model
- presentation phenomenology theory and experiments
- Quincke rollers
- mechanism
- experiment
- Solidification
- MIPS
- Solidification theory model phenomenology
- Experimental solidification phase diagram transition
- Conclusion

- Finite lower bound for traffic jam extent and lever rule
- Constant binodals at coexistence

D. Martin

Introduction

- Vicsek model
- presentation phenomenology theory and experiments
- Quincke rollers
- mechanism
- experiment
- Solidification
- MIPS
- Solidification theory model phenomenol
- Experimental solidification phase diagram transition
- Conclusion

- Finite lower bound for traffic jam extent and lever rule
- Constant binodals at coexistence
- Slow coarsening dynamic leading to complete phase separation •

D. Martin

Introduction

- Vicsek model
- presentation phenomenology theory and experiments
- Quincke rollers
- mechanism
- experiment
- Solidification
- MIPS
- Solidification theory model phenomenol
- Experimental solidification phase diagram transition
- Conclusion

- Finite lower bound for traffic jam extent and lever rule
- Constant binodals at coexistence
- Slow coarsening dynamic leading to complete phase separation •
- Existence of a metastable region in the phase diagram •

D. Martin

Introduction

Vicsek mode

presentation phenomenology theory and experiments

Quincke rollers

mechanism

experiment

Solidification

MIPS 1

Solidification theory model phenomenology

Experimental solidification phase diagrar transition

Conclusion

Conclusion and outlook

- Unveiling of a new phase transition at high ρ in roller flock : active solidification

D. Martin

Introduction

Vicsek model presentation phenomenology

experiments

mochanicm

experiment

Solidification

MIPS 1

Solidification theory model phenomenology

Experimental solidification phase diagram transition

Conclusion

Conclusion and outlook

- Unveiling of a new phase transition at high ρ in roller flock : active solidification
- It can be described by MIPS occuring in a polar flock

D. Martin

Introduction

Vicsek model presentation phenomenolog

theory and experiments

Quincke rollers

mechanism experiment

Solidification

MIPS 1

Solidification theory model phenomenology

Experimental solidification phase diagran transition

Conclusion

Conclusion and outlook

- Unveiling of a new phase transition at high ρ in roller flock : active solidification
- It can be described by MIPS occuring in a polar flock
- It is a generic feature of aligning motile polar units and speed reduction at high density

D. Martin

Introduction

Vicsek model

- presentation phenomenology theory and experiments
- Quincke rollers
- mechanism experiment
- Solidification
- MIPS
- Solidification theory model phenomenolo
- Experimental solidification phase diagram transition
- Conclusion

Conclusion and outlook

- Unveiling of a new phase transition at high ρ in roller flock : active solidification
- It can be described by MIPS occuring in a polar flock
- It is a generic feature of aligning motile polar units and speed reduction at high density
- A lot of open questions remaining :
 - Is there other phase transition to discover at high density ?
 - What is the dynamic and the structure of the jammed phase ?

