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Habitable zone planets

Meadows & Barnes, 2018

Habitable zone
Range of orbital separations around a star within 

which liquid water could be sustained on the 
surface of a planetary body.

Huang, 1959; Kasting et al., 1993Many elements have an impact on the habitable zone…



4

Habitable zone planets

Courtesy: E. Bolmont (Kopparapu et al. 2013, Turbet et al. 2023)

Habitable zone
Range of orbital separations around a star within 

which liquid water could be sustained on the 
surface of a planetary body.

Huang, 1959; Kasting et al., 1993
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Habitable zone planets

Hill et al. 2023

Habitable zone planets

⇎ 

Permanent surface liquid 

water

Habitable zone
Range of orbital separations around a star within 

which liquid water could be sustained on the 
surface of a planetary body.

Huang, 1959; Kasting et al., 1993



Une image contenant sphère, objet astronomique, planète, lune

Description générée automatiquement
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TRAPPIST-1 system

TRAPPIST-1

Credit: ESO/O. Furtak

Credit: NASA/JPL-Caltech/R. Hurt (IPAC)

7 rocky planets

3 planets in habitable zone

M-dwarf host star

Compact system

https://www.spitzer.caltech.edu/image/ssc2017-01b-abstract-concept-of-trappist-1-system
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Tidal interactions

Different points of an extended body feel different gravitational potential. 

The body is deformed.

There is a delay between the position of the perturber and the position of the tidal bulge.

Extended body
Point mass

The two bodies exchange angular momentum.

MoonEarth
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Tidal evolution: End state for close-in planets

One planet orbiting a star

Damping,

Alignment,

Synchronisation.

Multiple planets orbiting a star

Tidal damping and planet-planet excitation,

Precession.

In both cases

On longer timescales, migration.

Orbital and rotational parameters 

evolve with time !
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N-body code: Posidonius
Blanco-Cuaresma & Bolmont, 2017

Describe the motion of many interacting particles,

Follow the orbit of planets, track orbital parameters.

Gravitation and tidal forces,
 
Constant time lag model.

Simulation of TRAPPIST-1 system
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Climate model

Hierarchy of climate models

0-D Energy Balance Model (= 0-D EBM)

1-D Energy Balance Model (= 1-D EBM)

...

3-D Global Climate Model (= 3-D GCM)

For each latitude, the model computes the 

evolution of temperature with time.



Incoming stellar radiation Reflection (albedo)

Outgoing longwave radiation

Absorbed stellar radiation

Heat transport

Illustration adapted from E. Bolmont
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Radiative energy balance

Source of energy → Incoming stellar radiation

Sinks of energy → Outgoing longwave radiation

Transport of energy → Latitudinal heat transport

Aquaplanet
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Radiative energy balance

𝐶
𝜕𝑇(𝑥, 𝑡)

𝜕𝑡
−

𝜕

𝜕𝑥
𝐷 1 − 𝑥2

𝜕𝑇 𝑥, 𝑡

𝜕𝑥
+ 𝐼(𝑇) = 𝑆(1 − 𝐴(𝑇))

Surface heat 
capacity

Source of energy → Incoming stellar radiation

Sinks of energy → Outgoing longwave radiation

Transport of energy → Latitudinal heat transport

Williams & Kasting 1997; Spiegel et al. 2008; Dressing et al. 2010

Absorbed stellar radiation

Outgoing longwave radiation

Heat transport
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Radiative energy balance of an Earth-like planet

Absorbed stellar radiation
Amount of energy that contributes to the heating of the planet.

𝐼(𝑇) = 𝑆(1 − 𝐴(𝑇))
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Radiative energy balance of an Earth-like planet

Outgoing longwave radiation
Amount of energy that is radiated away.

𝐼(𝑇) = 𝑆(1 − 𝐴(𝑇))
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Radiative energy balance of an Earth-like planet

An Earth-like planet with 𝑆 =  𝑆0 has :

3 stable states

2 unstable states

𝐼(𝑇) = 𝑆(1 − 𝐴(𝑇))
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Radiative energy balance of an Earth-like planet

𝐼(𝑇) = 𝑆(1 − 𝐴(𝑇))
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Feedbacks

There is an interplay between various feedback processes:

Boltzmann radiative feedback (OLR)

Ice-albedo feedback (ASR)

Water vapour feedback (OLR)

Cloud feedback (ASR + OLR)

Positive destabilising feedbacks
Runaway glaciation

Runaway greenhouse

Kasting et al., 1993
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Earth-like aquaplanet
Earth-like aquaplanet

100% ocean

eccentricity = 0.0167

obliquity = 23.5° 
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The daily averaged insolation depends on orbital parameters such 
as:

𝑎 the semi-major axis of the planetary orbit,

𝑒 the eccentricity of the planetary orbit,

𝜀 the obliquity of the planet rotation axis.

a

𝑒 = 0 𝑒 ≠ 0

Orbital parameters
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Tuning: diffusion coefficient

North & Coakley 1979; Williams & Kasting 1997; Spiegel et al., 2008 

Three criteria:

1. Global mean temperature

2. Mean latitudinal temperature profile

3. Mean ice line

289 𝐾294 𝐾Earth-like planet

70% ocean, 30% land

eccentricity = 0

obliquity = 23.5° 
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Rushby et al. 2020

Gilmore 2014; Rushby et al. 2020; Brandt et al. 2005

Albedo wavelength dependence

∆𝐴

∆𝐴
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TRAPPIST-1e
TRAPPIST-1e

100% ocean

eccentricity = 0

obliquity = 0° 



TRAPPIST-1e

100% ocean

eccentricity = 𝑒𝑖

obliquity = 0° 

27

Effect of constant eccentricity

F =
𝐿𝑠𝑡𝑎𝑟

4𝜋𝑎2 1 − 𝑒2

Bolmont et al. 2016
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Bifurcation diagram

𝑇 > 373 𝐾

𝑇 < 273 𝐾

273 𝐾 < 𝑇 < 373 𝐾

TRAPPIST-1e

100% ocean

eccentricity = 𝑒𝑖

obliquity = 0° 
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Effect of time-dependent eccentricity
TRAPPIST-1e

100% ocean

eccentricity = {0, 𝑒(𝑡)}

obliquity = 0° 

N-body simulation
Climate simulation



Une image contenant ciel, lune, Ambré, soleil

Description générée automatiquement

• Slow rotating planets have a very efficient heat transport.

• Depending on the external forcing (eccentricity), some 
stable states become unavailable.

• Given observational constraints, TRAPPIST-1e would be in a 
tristability regime.

• A realistic description of the eccentricity evolution of 
TRAPPIST-1e does not significantly impact the climate.
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Conclusion

• Need of observations to constrain our climate model.

• The EBM can be used for studies of other planetary systems 
(e.g. more extreme dynamical cases). 

Outlook

Illustration, Credit: NASA/JPL-Caltech/R. Hurt (IPAC)

https://www.spitzer.caltech.edu/system/avm_images/binaries/6278/larger/ssc2017-01d.jpg?1603797854
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